
History of Computing

Raúl Rojas

Konrad
Zuse’s Early
Computers
The Quest for the Computer in Germany

History of Computing
Founding Editor

Martin Campbell-Kelly

Series Editor

Gerard Alberts, Institute for Mathematics, University of Amsterdam, Amsterdam,
The Netherlands

Advisory Editors

Gerardo Con Diaz, University of California, Davis, CA, USA

Jack Copeland, University of Canterbury, Christchurch, New Zealand

Ulf Hashagen, Deutsches Museum, München, Germany

Valérie Schafer, ISCC, CNRS, Paris, France

John V. Tucker, Department of Computer Science, Swansea University, Swansea,
UK

The History of Computing series publishes high-quality books which address the
history of computing, with an emphasis on the ‘externalist’ view of this history,
more accessible to a wider audience. The series examines content and history from
four main quadrants: the history of relevant technologies, the history of the core
science, the history of relevant business and economic developments, and the history
of computing as it pertains to social history and societal developments.

Titles can span a variety of product types, including but not exclusively,
themed volumes, biographies, ‘profile’ books (with brief biographies of a number
of key people), expansions of workshop proceedings, general readers, scholarly
expositions, titles used as ancillary textbooks, revivals and new editions of previous
worthy titles.

These books will appeal, varyingly, to academics and students in computer
science, history, mathematics, business and technology studies. Some titles will also
directly appeal to professionals and practitioners of different backgrounds.

Raúl Rojas

Konrad Zuse’s Early
Computers
The Quest for the Computer in Germany

Raúl Rojas
Nevada, USA

ISSN 2190-6831 ISSN 2190-684X (electronic)
History of Computing
ISBN 978-3-031-39875-9 ISBN 978-3-031-39876-6 (eBook)
https://doi.org/10.1007/978-3-031-39876-6

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland
AG 2023
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://doi.org/10.1007/978-3-031-39876-6
https://doi.org/10.1007/978-3-031-39876-6
https://doi.org/10.1007/978-3-031-39876-6
https://doi.org/10.1007/978-3-031-39876-6
https://doi.org/10.1007/978-3-031-39876-6
https://doi.org/10.1007/978-3-031-39876-6
https://doi.org/10.1007/978-3-031-39876-6
https://doi.org/10.1007/978-3-031-39876-6
https://doi.org/10.1007/978-3-031-39876-6
https://doi.org/10.1007/978-3-031-39876-6

Quando orientur controversiae, non magis
disputatione opus erit inter duos
philosophus, quam inter duos computistas.
Sufficiet enim calamos in manus sumere
sedereque ad abacos, et sibi mutuo (accito si
placet amico) dicere: calculemus.1

Gottfried Wilhelm Leibniz

1 “If controversies were to arise, there would be no more need of disputation between two
philosophers than between two calculators. For it would suffice for them to take their pencils in
their hands and to sit down at the abacus, and say to each other (and if they so wish also to a friend
called to help): Let us calculate.”

Foreword

This book describes the historical development of the architectures of the first
computers built by the German inventor Konrad Zuse in the period 1936–1945.
Although these machines are prominent in Germany, this is not the case in other
countries. In many books on the history of the computer, Zuse’s work receives only
passing mention. However, as the various chapters in this volume show, the kind
of computer architecture that Zuse developed is closer to modern computers than
the architectures of the Harvard Mark I or the ENIAC, the two American machines
most often celebrated as the world’s first computers.

Over the years, I have published most of the material in this book as articles
in academic journals, Internet sites, and conference proceedings. I started writing
about Zuse’s machines in 1994, so putting this book together meant reorganizing
all the contributions in a coherent way. Some articles published in German have
been translated for this volume. Each chapter contains references to the original
publications. The advantage for the reader is that this collection brings together all
stages of an amazing intellectual puzzle, the invention of the computer, no less, into
a single volume.

For this book, I have chosen to keep each chapter as a stand-alone piece, so
that they can be read in any order. Sufficient redundancy has been provided with
explanations at the beginning of each chapter to ensure clarity of context. The reader
can think of this book as a collection of essays that, after thirty years of research,
are now closely interwoven.

To make the book easier to read, the preface has been written as a kind
of “executive summary” containing the most important general information and
chronology. It is intended for the super-busy reader. Then, for those who are
just busy, the first chapter gives a comprehensive overview of the computers
Zuse built from 1936 to 1945, that is, the Z1, Z2, Z3, and Z4, as well as other
more specialized machines. Subsequent chapters deal with the architecture of each
computer, culminating in the description of Plankalkül, the first proposal for a high-
level programming language.

It is my sincere hope that the curious reader will venture out and peruse the
entire book. Some chapters are easier to understand than others. For example, the

vii

viii Foreword

Z1 computer, the mechanical calculator, is more difficult to digest than the relay
machines, the Z3 or Z4. After the overview in Chap. 1, the reader can skip to the
chapters on the Z3 or Z4 if she or he prefers, and then return to the chapter on the
Z1. Chapter 2 is easy to follow: it describes the historical circumstances for the
development of electronic computers in the USA and Europe.

This book is for the curious and the adventurous. Students and practitioners of
computer science should have no trouble following the material in all chapters.
Readers from other disciplines can certainly get the main message, perhaps by
adopting the nonlinear reading strategy mentioned above. Start with the concise
summary that follows, and you will be well on your way to retracing the steps of a
remarkable intellectual adventure.

Reno, USA Raúl Rojas
August 2023

Preface

Konrad Ernst Otto Zuse was born in Berlin in 1910 as the son of Emil and
Maria Zuse. He is generally considered the father of the computer in Germany.
He started thinking about automating computations as a student in the mid-1930s
and built a mechanical computer from 1936 to 1938/1939. The machine was called
V1 (Versuchsmodell 1, i.e. Experimental Model 1). By the end of the war, he
had built three more important computers: the V2, V3, and V4. The four were
renamed Z1, Z2, Z3, and Z4 to avoid any association with Wernher von Braun’s
V2 rockets. While the Z1 was a purely mechanical device (based on what Zuse
called “mechanical relays”), the processor logic of the Z2, Z3, and Z4 was based on
electromagnetic relays. Nevertheless, the mechanical memory of the Z2 and Z4 still
used sliding metal components as two-state memory elements. The logic design of
all four machines was completely binary: the decimal input was converted to base
two for all internal calculations in the processor. The result was converted back to
decimal for display (except in the Z2, which displayed the result as 16 bits).

The Zuse machines Z1, Z3, and Z4 used the floating-point representation, where
numbers are stored as a binary mantissa with its sign and an exponent of base
two (for example, .+1.010 × 23). The Z2 transitional machine was a fixed-point
prototype, a proof of concept. All four computers had a processor, a memory, an
input keyboard, and a visual display for results. Programs were punched, instruction
by instruction, on 35 mm film tape. The processor of the Z1 could perform the four
basic arithmetic operations, the Z2 only a subset. The Z3 could also extract square
roots of numbers. The Z4 had a much larger instruction set than any of the other
machines.

Zuse was drafted twice during the war. On both occasions, he was able to
get his discharge from the front so that he could work on structural analysis for
the Henschel Flugzeug-Werke, while at the same time continuing to build his
calculating machines through his own company. He built two small special machines
for the military (called S1, in 1942, and S2, in 1943/1944), which executed a
hardwired program that calculated the appropriate profile corrections for the wings
of flying bombs (Zuse was in charge of these computations at the Henschel factory
in Berlin). Both machines were binary and used fixed-point numbers.

ix

x Preface

Chronology of Zuse’s computers and important events during World War II

In 1941, after successfully demonstrating the Z3 relay machine computing
determinants, Zuse’s company received first a loan and then a military contract
to supply Henschel with the Z4, a machine that would be faster, have a larger
instruction set, and several punched tape readers, one for the main program and
the others for program libraries. The Z4 was nearing completion by the end of
the war but remained in storage for several years after the surrender. Finally, it
was refurbished and leased to the ETH Zurich in 1949–1950. This concludes the
early history of Zuse’s computers. With this successful transaction, Zuse was able to

Preface xi

restart his company, the first computer start-up in Germany. The figure above shows
the chronology of Zuse’s early computers and how it corresponds to important
events during the war. The diagram also shows the overlapping development of three
important American computers and Colossus, a British war effort.

The ten years of Zuse’s Sturm und Drang period (1935–1945) end with two
theoretical results: the design of the so-called logistic machine and its profound
relationship to the programming language “Plankalkül”, the first high-level com-
puter language ever proposed.

Photograph of Konrad Zuse working on the computer Z4 (Image: Konrad Zuse Internet Archive,
http://zuse.zib.de/)

In this book, we follow the development of Zuse’s ideas, computer by computer,
explaining their architectures and capabilities. As we will see, the main weakness
of all the machines was the omission of the conditional jump in the instruction
set. Even the Z4, the improved and more sophisticated computer, did not have a
conditional jump until the ETH required its inclusion as a prerequisite for acquiring
the machine. Until then, Zuse’s computers could only perform long sequences of
forward calculations, or a single loop obtained by attaching the beginning and end
of a punched tape. The conditional jump instruction greatly expanded the Z4’s

http://zuse.zib.de/
http://zuse.zib.de/
http://zuse.zib.de/
http://zuse.zib.de/

xii Preface

usefulness for complex numerical calculations. Zuse stated in later years that he
was aware of the need for a conditional jump, and even indirect addressing, but that
both required the program to be stored in memory in order to be effective (Zuse,
1972). However, given the small size of the mechanical and electromagnetic storage
units in his computers, storing the program in memory was out of the question.

Zuse’s competition in the USA was represented by three machines at this time:
the Atanasoff-Berry computer, a special-purpose binary device for solving systems
of linear equations, the IBM/Harvard-Mark I, a massive relay machine unveiled in
1944, and the ENIAC, the first programmable vacuum tube computer, completed
in 1945 (Bruderer, 2020). As you can see from the chronology in the figure, Zuse
was the early pacesetter for these developments. The Z1 was completed before the
American computers were even designed. However, all three American computers
could be shown to work before the Z4 was completed. Zuse’s initial advantage
dissipated during the war.

The Z4 was the computer that Zuse had dreamed of in 1935. Its realization
took ten years of intensive work under difficult wartime conditions. The design of
Plankalkül crowns these ten years, the most creative of Zuse’s life. Plankalkül was
a remarkable achievement because it aimed to establish a comprehensive symbolic
calculus for computer programs. Consequently, Zuse devised a notation capable of
expressing both predicate calculus formulas and equivalent imperative programs. In
this sense, Plankalkül is both a logical specification language and an algorithmic
language. Using Plankalkül notation, Zuse created the first symbolic processing
programs.

It would be another five years after the war before Zuse was able to lease/sell
the Z4 to the ETH, but by then the inventor who had designed all of his computers
single-handedly had become an entrepreneur, and new machines were increasingly
developed by committee in collaboration with his team of engineers. Zuse’s
company, which was re-established in 1949, operated independently until 1964,
when it was acquired by Brown, Boveri & Co. Siemens bought 70% of the company
in 1967 and the rest two years later. When it was liquidated in 1969, Zuse KG had
delivered 251 computers in Germany and other European countries during its twenty
years of operation.

Paradoxically, as late as 1950, when all new computer prototypes in other coun-
tries were electronic, Zuse was still thinking about mechanical binary components
as low-cost substitutes for relays or expensive electronic tubes. He was certainly the
last great maestro of mechanical computers, in the tradition of Babbage’s Analytical
Engine, but also one of the first builders of electromagnetic computers in the world.
His pioneering achievements lie between two intellectual and technological eras, in
the transition from the second to the third industrial revolution.

Nevada, USA Raúl Rojas
August 2023

References xiii

References

Bruderer, H. 2020. Milestones in analog and digital computing, vol. 1 and 2, 2075 p., 3rd edn.
Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-030-40974-6.

Zuse, K. 1972. Der Plankalkül, vol. 63 . Sankt Augustin: Berichte der Gesellschaft für Mathematik
und Datenverarbeitung.

https://doi.org/10.1007/978-3-030-40974-6
https://doi.org/10.1007/978-3-030-40974-6
https://doi.org/10.1007/978-3-030-40974-6
https://doi.org/10.1007/978-3-030-40974-6
https://doi.org/10.1007/978-3-030-40974-6
https://doi.org/10.1007/978-3-030-40974-6
https://doi.org/10.1007/978-3-030-40974-6
https://doi.org/10.1007/978-3-030-40974-6
https://doi.org/10.1007/978-3-030-40974-6
https://doi.org/10.1007/978-3-030-40974-6

Acknowledgements

As with any project that has taken so long, there are many people to thank for
their help and support over the years. First and foremost, I am deeply grateful
to Konrad Zuse, whose generosity in sharing his knowledge and experience was
instrumental in the development of this work. He was already the grand seigneur
of computing in Germany, yet he was always interested in engaging with young
researchers. Unfortunately, he passed away before our first simulation of the Z3 for
the Internet was completed. It would have given him a great deal of satisfaction to
see his machine running in the first Internet browsers.

My student Alexander Thurm wrote the first Java simulation of the Z3 almost
30 years ago. My colleagues Georg Heyne and Frank Darius were the hearts and
minds behind the reconstruction of the Z3 with modern relays. Our first Zuse-
related project was to build a modern relay version of the addition/subtraction unit
of the Z3. Thorsten Vetter, Wolfram Däumel, Lothar Schönbein, and Peter Zielske
developed different parts of the electronics for both projects. Cüneyt Göktekin wrote
the user interface for the Z3 reconstruction. He and Gerald Friedland as well as Lars
Knipping developed important parts of the Plankalkül interpreter. Mike Krüger, Olaf
Langmack, and Denis Kuniß developed the parser and executable code generator for
the interpreter. Ludmila Scharf translated Zuse’s chess code into Java for an Internet
simulation. Hadwig Dorsch provided me with important documents and blueprints
of the reconstructed Z1 built for the German Museum of Technology in Berlin. She
and Eva Kudrass also gave us direct access to the machine, a rare privilege in a
museum.

I must also thank Horst Zuse, Konrad Zuse’s eldest son, who over the years has
provided insight and support for all of our Zuse projects at Freie Universität Berlin.
He was able to raise the entire funding for our reconstruction of Z3. The Konrad
Zuse Society was always interested in my research and organized talks on some of
the papers that are now chapters of the book.

For many years, the Konrad Zuse Center in Berlin has generously provided the
server for hosting all documents in the Zuse Internet Archive, initiated by me and
funded by by the German Research Foundation (DFG), as well as the simulations
of Z1 and Z3. Unfortunately, the development of Java made our applets obsolete. I

xv

xvi Acknowledgements

would also like to acknowledge the fruitful collaboration with Dr. Wilhelm Füßl
of Deutsches Museum in Munich during the successful digitization of Zuse’s
Nachlass. Special thanks to Susanne Schöttker-Söhl for her transcription work on
the documents and her contributions to the digitization process.

I would like to thank friends and colleagues who provided valuable feedback
and suggestions during the development of this book: Victor Perez Abreu, Rafael
Gamboa, Alexander Förster, Michael Engel, David Hemmendinger, Stefan Höltgen,
and Eva Kudrass for their suggestions and corrections. I am especially indebted to
Prof. Wolfgang Bibel for his assistance in debugging the manuscript and for helping
me to clarify the historical achievements contained in Plankalkül. His guidance and
expertise were instrumental in ensuring the accuracy and clarity of the content. I
would also like to thank Günter Feuer for his meticulous reading of the various
chapters. His careful attention to detail and astute suggestions for deletions and
consolidations greatly improved the overall readability of the manuscript. I am also
grateful to Sarah Hiller for her work in cleaning up the LaTeX code and organizing
the references in the book. Philomena Maher read the manuscript and corrected my
English. My thanks to all of them.

I would like to express my deepest gratitude to my wife, Magui, and my daughter,
Tania, for their unwavering support and understanding throughout my projects. They
patiently stood by me during the long hours of work, especially during the intense
periods when I was immersed in deciphering Zuse’s intricate circuits. It was a
challenging journey, but the ultimate satisfaction came from being able to visualize
in my mind’s eye the harmonious orchestration of interlocking mechanical parts
within the first computer in Germany. This book is dedicated to both of them as a
token of my love and gratitude.

Contents

1 Konrad Zuse and the Dawn of the Computer Age . 1
1.1 Birth and Education . 1
1.2 First Ideas: The Spreadsheet Computer . 3
1.3 The Z1 and Z3 Machines . 5
1.4 Construction and Capabilities of the Z1, Z3, and Z4 8
1.5 The Aftermath of the War and Plankalkül . 10
1.6 Rebirth of Zuse’s Company . 13
1.7 Epilogue . 15
References . 16

2 The Race to Build the Computer in World War II. 19
2.1 Berlin Between the Wars . 19

2.1.1 Science and Art in Berlin. 20
2.1.2 The Years of Computability . 21

2.2 Computers in Wold War II . 24
2.2.1 John Atanasoff’s ABC . 24
2.2.2 The Harvard Mark I . 26
2.2.3 The ENIAC . 27
2.2.4 Wunderwaffen and the Z4 . 29
2.2.5 The First Computers . 30

2.3 Helmut Schreyer and the Electronic Computer . 31
2.3.1 The Closest Friend. 32
2.3.2 The Electronic Computer. 35

2.4 Conclusion . 37
References . 38

3 The Z1: Architecture and Algorithms of Zuse’s First Computer 39
3.1 Konrad Zuse and the Z1. 40
3.2 Block Architecture . 43
3.3 Layout of the Mechanical Components . 46
3.4 The Mechanical Gates . 49

3.4.1 The Mechanical Clock Cycle . 55

xvii

xviii Contents

3.4.2 Transmission of Impulses . 56
3.4.3 An Example: The Mechanical Addition Unit 57
3.4.4 Preliminary Summary of the Mechanical Principles 58

3.5 The Memory of the Z1 . 59
3.6 The Addition Unit of the Z1 . 60
3.7 The Sequencer of the Z1 . 61
3.8 The Processor’s Datapath . 65
3.9 Conclusions . 68
Appendix: The Arithmetic Instructions . 70
References . 78

4 The Z2 and the Cipher Machine . 81
4.1 Architecture of the Z2 . 81
4.2 Konrad Zuse’s Proposal for a Cipher Machine . 83

4.2.1 The Context of the Invention . 83
4.2.2 Konrad Zuse’s Letter . 84
4.2.3 Discussion . 86

References . 87

5 The Architecture of the Z3 . 89
5.1 Early Computing Machines . 89
5.2 Architectural Overview of the Z3 . 91

5.2.1 Block Structure . 91
5.2.2 Floating-Point Representation . 92
5.2.3 Instruction Set . 93
5.2.4 Number of Cycles . 93
5.2.5 Programming Model . 94

5.3 Block Diagram of the Z3. 96
5.3.1 The Processor . 96
5.3.2 The Control Unit. 98
5.3.3 Microcontrol of the Z3 . 99
5.3.4 The Adders . 100

5.4 Numerical Algorithms . 101
5.4.1 Floating-Point Exceptions . 101
5.4.2 Addition and Subtraction . 102
5.4.3 Multiplication . 104
5.4.4 Division . 105
5.4.5 Square Root Extraction . 106
5.4.6 Read and Display Instructions . 109

5.5 Complete Architecture of the Z3 . 109
References . 111

6 How to Make Zuse’s Z3 a Universal Computer . 113
6.1 Universal Machines and Single Loops . 113
6.2 Simulating Branches . 114
6.3 Halting the Computation . 116

Contents xix

6.4 Conclusions . 116
References . 117

7 The S1 and S2: Zuse’s Work for the German Military 1941–1945 119
7.1 Introduction . 119
7.2 The HS-293 Flying Bomb . 121
7.3 Block Architecture of the S1. 124
7.4 Operation of the S1. 127
7.5 The S2 and Automatic Process Control . 130
7.6 Discussion . 132
References . 133

8 The Architecture of the Z4 . 135
8.1 Introduction . 135
8.2 Block Architecture . 137
8.3 Architectural Details . 139
8.4 The Arithmetic Instruction Set . 141
8.5 Conditionals and Control Transfer . 143
8.6 Conclusions . 145
References . 146

9 The Conditional Jump: Making the Z4 Universal . 149
9.1 Coding for the Z4 . 149
9.2 The Punched Tape of the Z4 . 150
9.3 Conditional Commands . 151
9.4 The Conditional Jump. 152
9.5 The Competitors . 153
References . 154

10 Plankalkül . 155
10.1 Introduction . 155
10.2 Origins of the Plankalkül . 157
10.3 Symbolic Computation. 159
10.4 The Syntax of the Plankalkül . 160

10.4.1 Variables and Data Types . 161
10.4.2 Arithmetic and Logic Statements . 163
10.4.3 Guarded Commands . 164
10.4.4 Iterations . 165
10.4.5 Examples of the Implicit Form of Plankalkül 166
10.4.6 Linearized Form of the Plankalkül. 168
10.4.7 Functions and Function Calls . 168
10.4.8 Input and Output . 169

10.5 Implementation Issues . 170
10.5.1 The Editor . 170
10.5.2 The Parser . 172
10.5.3 The Runtime System . 172

10.6 Sample Programs . 173

xx Contents

10.7 Conclusions . 174
Appendix: Syntax of the Implementation of Plankalkül 2000 175
References . 178

11 Zuse’s Computer for Binary Logic . 179
11.1 Introduction . 179
11.2 General Structure of the Logic Machine . 181
11.3 Encoding of the Instruction Set . 183
11.4 The Control and Decoding Unit . 184
11.5 The Memory Unit . 184
11.6 The Processor. 185
11.7 Was the Machine Arithmetically Complete? . 185
11.8 Discussion . 187
References . 189

12 The First Code for Computer Chess . 191
12.1 Computer Chess . 191
12.2 Prehistory of Computer Chess . 192
12.3 Enter Turing . 193
12.4 Zuse’s Chess-Playing Program . 194
12.5 Move Generation in Zuse’s Notebooks. 197
12.6 Computer Chess After Zuse, Turing, and Shannon 199
References . 200

13 The Reconstruction of Konrad Zuse’s Z3 . 203
13.1 Introduction . 203
13.2 Architecture of the Z3 . 205
13.3 The Konrad Zuse Internet Archive . 206
13.4 Reconstruction of the Addition Unit . 208
13.5 Full Reconstruction of the Z3. 210
13.6 The Virtual Z3 . 213
13.7 Conclusions . 214
References . 216

14 Epilogue . 217
14.1 A Hierarchy of Architectural Levels . 218
14.2 Celebrating the Z1 in 2038? . 221
14.3 Acknowledgments for Figures . 223
References . 224

References . 225

Chapter 1
Konrad Zuse and the Dawn
of the Computer Age

This chapter provides an overview of the basic facts about Konrad Zuse and his
early computing machines, i.e., those built in the period 1936–1945. The chapter
summarizes the whole book.

The inventor Konrad Zuse (1910–1995) is a legendary figure in Germany, where
he is widely celebrated as the “father of the computer.” In 1941, Zuse unveiled the
world’s first programmable computing machine in his Berlin workshop. The Z3, as
the machine became known, was shown to a select group of visitors to demonstrate
its capabilities. Young Konrad had begun designing computers long before the war.
Against all odds, he persevered during and after the global conflict.

In other countries, however, Konrad Zuse is not so well known. This is not
surprising, since most of his early computers were not recognized, either in
Germany or abroad, until after 1945. Many American books on the history of
computing mention the German inventor only briefly (Campbell-Kelly et al. 2013).
Typically, his work receives only a passing mention, even though, as this book
shows, modern computers bear more resemblance to Zuse’s Z1 or Z3 than to the
American ENIAC or the Harvard Mark I, two other machines built during World
War II.

1.1 Birth and Education

Konrad Ernst Otto Zuse was born on June 22, 1910 (2 years before the birth of
Alan Turing) in Wilmersdorf, now a district of Berlin, as the son of Emil and Maria
Zuse. His father was a Prussian civil servant in the postal service. Emil Zuse moved
the family to Braunsberg (now Braniewo in Poland) when Konrad was 2 years
old (see Fig. 1.1). Konrad attended elementary school in Braunsberg and received
his basic education at the local Hosianum Gymnasium (where the famous German
mathematician Karl Weierstraß had once taught). In 1923, the family moved again,

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Rojas, Konrad Zuse’s Early Computers, History of Computing,
https://doi.org/10.1007/978-3-031-39876-6_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39876-6protect T1	extunderscore 1&domain=pdf
https://doi.org/10.1007/978-3-031-39876-6_1
https://doi.org/10.1007/978-3-031-39876-6_1
https://doi.org/10.1007/978-3-031-39876-6_1
https://doi.org/10.1007/978-3-031-39876-6_1
https://doi.org/10.1007/978-3-031-39876-6_1
https://doi.org/10.1007/978-3-031-39876-6_1
https://doi.org/10.1007/978-3-031-39876-6_1
https://doi.org/10.1007/978-3-031-39876-6_1
https://doi.org/10.1007/978-3-031-39876-6_1
https://doi.org/10.1007/978-3-031-39876-6_1
https://doi.org/10.1007/978-3-031-39876-6_1

2 1 Konrad Zuse and the Dawn of the Computer Age

Fig. 1.1 The map of Germany after 1918 showing the location of the cities where Konrad Zuse
lived and the year of migration. The shaded parts are the territories lost by Germany after World
War II. The birth date is 1910, and the date of death is 1995

this time to Hoyerswerda (a town near the present-day border with Poland). Zuse
was enrolled at the local Realgymnasium, an institution that prepared students for
admission to several technical universities in Germany. In his autobiography, Zuse
describes the new environment, which included a local mining industry, as better
suited to his technical aspirations (Zuse 1970). It also helped that the school required
fewer hours of Latin, a language Zuse detested.

In 1927, Konrad Zuse received his high school diploma (Abitur) and soon after
began his studies at the Technische Hochschule zu Berlin (renamed Technische
Universität Berlin after World War II). Zuse mentions in his memoirs that he was 2
years younger than the other students (Zuse 1970). Later in life, he regretted that he
had not tried to learn more at school.

When he enrolled at the university, Zuse had not yet made up his mind about
his future profession. He first tried mechanical engineering, then switched to
architecture, took a year off, tried graphic design for advertising, and finally,
chose civil engineering. Zuse wrote that he eventually discovered that this type of
profession was ideal for him because it allowed him to combine his artistic interests

1.2 First Ideas: The Spreadsheet Computer 3

with his technical skills, especially in mechanical design. It was also a profession
that gave the student more creative freedom (Zuse 1972). As a high school student,
Zuse was already a technical dreamer and tinkerer, often retreating to work with his
“Stabil” mechanical set (a kind of German Meccano), which allowed him to build
prototypes of complex machines. As a student, he won several prizes for his Stabil
constructions (the last in 1928), which he liked to show off to his friends (Rojas
2001).

1.2 First Ideas: The Spreadsheet Computer

While studying civil engineering at the TH Berlin, Zuse learned to perform highly
repetitive structural calculations, such as those needed to determine the stress
on structures like bridges or cranes. These calculations were typically performed
manually or with the aid of desk calculators. Spreadsheets with all the necessary
formulas preprinted on them were painstakingly filled out, row by row, column by
column. It was a tedious and repetitive task that led Zuse to consider the possibility
of automating this work. In these spreadsheets, the engineer simply had to enter data
and follow a fixed computational path. Therefore, he thought, a machine could take
over (Kurrer 2010).

In his autobiography, Zuse traces his interest in computing machines back to
1934/35. In 1934, he submitted a “Studienarbeit” on the systematic arrangement
of computations for structural analysis (Fig. 1.2) (Kurrer 2010). By then, he was
thinking full-time about automating computational tasks. His initial concept was to
map spreadsheets onto a plane of memory cells. In each cell, it would be possible

Fig. 1.2 Example of a spreadsheet for a static forces calculation (Zuse 1970). Numbers in cells are
multiplied horizontally and added vertically, until the lowest right cell has been filled. The initial
constants (in this case .a, b, c, d) are written in the cells containing a symbol. That initial data
trigger the subsequent computations. The final result, corresponding to the formula at the bottom,
is written in the lowest cell to the right

4 1 Konrad Zuse and the Dawn of the Computer Age

Fig. 1.3 A read/write head
able to displace across a plane
for reading and writing
numbers from the spreadsheet
cells (using vertical pins)
(Zuse 1970). The box St
manages the control, the box
R represents the calculating
portion of the device

to store a number using vertical pins representing zeros or ones according to their
height. A mechanical device would traverse the entire plane (using something like
the mechanism of a modern xy plotter) and would be able to read numbers from each
cell (encoded using vertical pins) for the computations needed in the spreadsheet
(Fig. 1.3). It could then store the result in a new cell. The device would be something
like a pocket calculator, but with a mobile read/write head going from cell to cell in
the planar spreadsheet (Zuse 1970).

The “spreadsheet computer” envisioned by Zuse already contained some inter-
esting ideas. One was to use the binary system to represent positive numbers, the
other to represent negative numbers using the complement representation, so that
subtraction could be treated as addition with a complementary number. Zuse quickly
realized that the memory cells did not have to be arranged in any particular order,
as they were in the spreadsheets. If the cells were numbered (i.e., addressable), they
could be retrieved by their address. So he went on to design a computer with a
processor and addressable memory based on binary numbers and their complement
(the two’s complement representation). Also during these years, he developed what
he called the “semi-logarithmic” (i.e., floating-point) representation that he would
use in all of his early computers. He also wrote a complete description of the binary
system and the algorithms he intended to use (Zuse 1937).

We show in this book that Konrad Zuse pursued almost the same basic computer
architecture during the period 1936–1945, through different incarnations of the basic
ideas. His successive machines were called V1, V2, V3, and V4, with the capital V
standing for Versuchsmodell (experimental model). The V was changed to Z after
the war to avoid any association with the V2 rockets. Between the Z3 and Z4, Zuse
built two specialized machines for the German military, the S1 and S2. The S stands
for “Sondermaschine” (special machine). The S1 and S2 were based on a small
subset of the Z3 architecture, but worked with fixed-point numbers (integers).

1.3 The Z1 and Z3 Machines 5

1.3 The Z1 and Z3 Machines

In July 1935, right after graduation, Zuse began working as a stress analyst for
the aircraft manufacturer Henschel-Flugzeug-Werke. The German aircraft industry
was expanding at a furious pace, in violation of the Versailles Peace Treaty. Only 2
years earlier, Adolf Hitler had been elected chancellor, assuming dictatorial powers,
and the country was on the brink of war. Zuse’s work at Henschel consisted of
supervising the structural calculations needed to correct the wings of aircraft with a
full metal fuselage.

Zuse remained in his position at Henschel for less than a year before resigning
on May 31, 1936, in order to found his own company, which would be based on
his design for a computing device. In early 1936, shortly before his departure,
he wrote a lengthy memo entitled “Computing Machine for the Engineer” (Zuse
1936d) in which he detailed his vision of an automatic device comprising storage
and processing components capable of performing extended sequences of basic
arithmetic operations. Paradoxically, Zuse’s brief tenure at Henschel would prove
crucial for him in the years to come. Twice in his life, his superiors at the armament
company helped him secure a discharge from the army, arguing both times that he
was needed as an engineer, not on the battlefield.

In mid-1936, with the financial support of his parents, Zuse began building the
automaton that had existed only in his notebooks. Some friends at the university
helped by working for him, while others offered small monetary contributions so
that he could finish what would become the Z1 machine. In 1937, he showed his
machine to Kurt Pannke, a designer of special calculators (Zuse 1970), who was
impressed enough to contribute 7000 Reichsmark for further development of the
machine (at that time, a house on the outskirts of the city could be bought for 30,000
Reichsmark).

Pannke’s financial support notwithstanding, one aspect that this book makes clear
is that the most important difference between Zuse and other computer inventors
working in the late 1930s was the fact that he was essentially building his machines
alone, whereas in the United States, scientists like John Mauchly (Burks and
Burks 1988) and Howard Aiken (Aiken and Hopper 1982) had the resources of
universities, the military, or major corporations at their disposal. The logical and
mechanical conception of the Z1 was entirely Zuse’s brainchild.

Zuse, essentially unaware of the internal structure of calculators built at the time,
started from scratch and developed an entirely new type of mechanical assembly.
While existing desktop calculators were based on the decimal system and used
rotating mechanical components, Zuse decided to use the binary system and metal
plates that could move linearly back and forth. That is, the plates could only slide
from position 0 to position 1 and vice versa. Zuse’s basic mechanical component
was a switch that could be “opened” or “closed” like an electromagnetic relay.

Such simple mechanical elements were all that was needed for a binary machine,
but important obstacles had to be overcome. It was necessary to specify the complete
logical description of the machine and then “wire” it accordingly. The mechanical

6 1 Konrad Zuse and the Dawn of the Computer Age

Fig. 1.4 One of the few existing pictures of the mechanical Z1 built in Zuse’s living room (Image:
Deutsches Museum)

components, however, posed a formidable challenge, since any movement of one
logic gate had to be mechanically coupled to the movement of the other gates.
Horizontal displacements of the components had to be transformed into sliding
displacements over different planar layers of the machine or even into vertical
movements. From today’s perspective, the 3D mechanical design of the machine
was much more complicated than conceiving its purely logical structure. It is fair to
say that none of Zuse’s friends understood exactly how the machine worked, even
though they spent weeks at his home making the thousands of metal parts needed
for the apparatus. One of his assistants wrote: “I am honest enough to say that I
worked blind, and that I did not know how the monster that was being built there
would one day work” (Zuse 1970).

The Z1 was operational in 1938 (Fig. 1.4). It was shown to several people who
saw it rattle and clatter as it computed the determinant of a .3 × 3 matrix. However,
the machine was never reliable enough. The mechanical components, all cut by
hand from metal plates, tended to jam. Zuse later called the Z1 a “dead end.”
Nevertheless, the mechanical Z1 proved that the logical design was sound. An
electromagnetic realization, using telephone relays, could be considered as the next
step. Helmut Schreyer, an electronic engineer and college friend of Zuse, suggested
the use of vacuum tubes when he saw the machine. In fact, Schreyer chose this as
his dissertation project and developed some vacuum tube circuits for an electronic
device. Zuse, however, doubted that vacuum tube machines could be as cheap and
reliable in the long run as telephone relays or even mechanical components (Zuse

1.3 The Z1 and Z3 Machines 7

1943). Zuse’s goal was to develop a robust, programmable replacement for existing
mechanical calculators that could be used in large or medium-sized companies. This
was to be a computing machine for the engineer, eventually small enough to be
placed on a desk.

In 1938, Schreyer and Zuse showed some electronic circuits to a small group
at the university. When asked how many vacuum tubes would be needed for
a calculating machine, they replied that 2000 tubes and several thousand other
components would be needed. The academic audience groaned in disbelief—the
most complex vacuum circuits of the time contained no more than a few hundred
tubes, and the electrical power required to run such a machine would be prohibitive.
However, just 7 years later, ENIAC, built at the Moore School of Engineering in
Philadelphia, would show the world that vacuum tube machines, while expensive,
were entirely feasible (Burks and Burks 1981).

The impending invasion of Poland in 1939 had immediate consequences for
Zuse: he was drafted into the army on August 26. With the help of Kurt Pannke,
he tried to get a transfer to Berlin to continue his work on the next computing
machine. Helmut Schreyer, who worked as an engineer at the university, also tried
to get Zuse discharged by offering to build an automatic air defense system that
could be operational in 2 years. His offer was met with the sardonic reply that
the war would be over by then. Eventually, Zuse’s acquaintances at Henschel were
able to secure his discharge and transfer to the Henschel aircraft factory in Berlin-
Adlershof, where he was rehired to supervise static force calculations. Later, he
automated the calculations necessary to correct the wings of the “flying bombs”
(radio-controlled missiles) being built at the factory.

In March 1940, Zuse began working for “Special Section F” at the Henschel
factory (the flying bombs unit, headed by Prof. Herbert Wagner). Two by-products
of his work there were the calculating machines S1 and S2 (first named HS-1 and
HS-2, where HS refers to Henschel-Sondermaschine). The S2 could automatically
sense and measure the profile of rocket wings, convert the analog measurements
into digital numbers, and compute corrections based on those values. The previous
model, the S1, required manual input of these numbers using a decimal keyboard.
The S1 and S2 were probably the first digital computers used for factory process
control. The instrumentation used in the S2 was one of the first industrial analog-
to-digital converters, although it was never used in real production. From a
computational point of view, both machines were a subset of the machines described
below. Their existence remained unknown to the general public for years after the
war (Fig. 1.5).

In 1940, moving away from the mechanical design of the Z1, Zuse assembled the
Z2 machine, an experimental prototype that used a relay-based integer processor and
a mechanical memory cannibalized from the Z1. This small machine helped Zuse
convince the Deutsche Versuchsanstalt für Luftfahrt (DVL) to partially fund the
development of the Z1’s successor, the Z3, which would be built using only relays.

8 1 Konrad Zuse and the Dawn of the Computer Age

Fig. 1.5 The abstract architecture of all Zuse’s machines (on top) and its concretization in several
machines that he built from 1936 to 1945. The Z1, Z3, and Z4 worked with floating-point numbers,
the S1 and S2 with fixed-point numbers. The relay machine Z2 is not shown in the figure. It had
the abstract structure of the Z1, but used fixed-point numbers. It was built as a proof of concept for
the use of relays as binary elements

1.4 Construction and Capabilities of the Z1, Z3, and Z4

In the Z1 and Z3, the input and the results were floating-point numbers (i.e., numbers
such as .+12.654 × 106, with an integer and a fractional part multiplying a decimal
power). Zuse developed a binary representation for floating point very similar to
the internal number format used in modern computers. Each number was stored in
three parts: the sign of the number, the exponent of the number in two’s complement
notation, and the mantissa (also called the significand) of the number. To handle each
part, the processor of the Z1 and Z3 consisted of two main blocks, one for processing
the exponents of numbers and one for processing the mantissas (Rojas 1997).
Zuse called his approach “semi-logarithmic” notation, since in the floating-point
representation the exponent of base 2 represents the integer part of the logarithm
(base 2) of the stored number. Zuse dated this idea to 1934 (Zuse 1972).

The two machines, Z1 and Z3, shared a common architecture. Their main
components (Fig. 1.6) were:

1. The memory for storing numbers (16 in the Z1, 64 in the Z3).
2. The processor for performing arithmetic operations.
3. A punched tape for storing the sequence of program instructions.
4. A decimal input/output console.

1.4 Construction and Capabilities of the Z1, Z3, and Z4 9

Fig. 1.6 Separation between
processor and memory in the
Z1

Instructions were read from the tape to be executed one by one by the processor.
The console allowed the user to enter decimal numbers with a decimal keyboard
(similar to the keyboard of a cash register), while the results were displayed in a
panel with decimal digits that were selected to be uncovered mechanically in the Z1
or highlighted with lamps in the Z3.

The instruction set of the Z1 and Z3 included the four arithmetic operations
(addition, subtraction, multiplication, and division). The Z3 also included the square
root operation. There were two additional operations for reading and displaying
decimal results (convert from decimal to binary and vice versa) and two for
transferring numbers between the processor and memory (load and store). The Z3
was very much like an early electronic calculator of the 1970s, but much slower: a
multiplication had 18 machine cycles and did the calculation in 3 seconds. Division
and square root operations were performed in about the same time.

With the instruction set mentioned above, it was possible to compute any arith-
metic formula of the kind used in the engineering applications Zuse had in mind.
However, the instruction set did not provide a conditional branch instruction, so it
was relatively difficult, though not impossible, to perform conditional computations.
Also, the two ends of the punched tape could be joined to form a loop, so that
repeated execution of the same program was possible.

I have always thought that Zuse’s vision of a spreadsheet computer, where all
computations flow deterministically from start to finish, made him overlook the
crucial importance of the conditional branch, even for small programs. It is possible
that the static computations that Zuse had to supervise at Henschel were almost
always embedded in spreadsheets. In his autobiography, Zuse explains the lack
of the conditional branch as a way of keeping the complexity of the machine’s
computations down, but his explanation is not convincing (Zuse 1970). Zuse offers
another explanation in his 1945 design for a high-level language, the Plankalkül. He

10 1 Konrad Zuse and the Dawn of the Computer Age

writes: “I deliberately did not include the conditional branch and the computation
of addresses in the machines to be developed, because this would have delayed their
delivery. Also, the necessary technical conditions were not available during those
war years (for example, the construction of storage units with sufficient capacity to
store the computer program)” (Zuse 1972).

Zuse kept the number of logic gates for the processor low by relying on
controllers that acted as microsequencers, one for each instruction in the instruction
set. A microsequencer in the Z3 consisted of a rotating arm that advanced one
step in each cycle of the machine, like a rotary dial. A motor provided the clock
cycles needed to synchronize all parts of the machine. In the case of the Z3, the
operating frequency was set at five cycles per second. That is, five times per second,
the rotating arm in a microsequencer activated the next microstep of the current
operation. For example, in the case of multiplication, repeated addition and shifting
of numbers were required (as happens when you multiply two numbers by hand).
The required 18 suboperations were all started by a microsequencer with 18 contacts
for the rotary switch. The microsequencer can be thought of as a kind of hardwired
program that reduces very complex instructions to a sequence of simple operations.
Therefore, the entire internal operation of the machine could be changed by rewiring
the microsequencers without having to change the rest of the processor. This resulted
in a very efficient and flexible architecture and explains how Konrad Zuse was
able to build a machine that rivaled the British or American computers of the same
period, despite having far fewer resources at his disposal.

During World War II, Zuse worked for the Henschel factory, but was finally able
to start his own business in April 1941. The Zuse Ingenieurbüro und Apparatebau,
Berlin was the first company in the world founded with the sole purpose of
developing computers. The successful demonstration of the Z3 brought Zuse a
contract with the DVL and then with the Ministry of Aviation to develop an even
larger computer, the Z4. This machine had a very similar design to the Z3, but
with a larger instruction set. The machine was built (with an initial memory of 12
words, expandable to 64) and was almost operational by February 1945. By this
time, Zuse’s company already had 20 employees (Table 1.1).

1.5 The Aftermath of the War and Plankalkül

In early 1945, Zuse fled with the Z4 before Berlin fell to the Soviet Army. One
of his collaborators was able to get the machine shipped by train and somehow
managed to misrepresent it as being of strategic military value. The Z1 and Z3 had
already been destroyed in air raids 2 years earlier, leaving the Z4 as the only asset of
Zuse’s company. After several detours, Zuse and his team settled in Bavaria, where
he survived the following years by painting postcards, consulting, and attempting
to restart his company. During this period of forced inactivity, he completed his
manuscript on the Plankalkül, a remarkable document first published in 1972.

1.5 The Aftermath of the War and Plankalkül 11

Ta
bl
e
1.
1

O
ve

rv
ie

w
 o

f
th

e
Z

us
e

m
ac

hi
ne

s
bu

ilt
 f

ro
m

 1
93

6
un

til
 1

94
5

(Z
us

e
19

46
).

 T
he

 a
bb

re
vi

at
io

n
H

FW
 r

ef
er

s
to

 H
en

sc
he

l-
Fl

ug
ze

ug
-W

er
ke

, a
nd

 R
L

M
 to

th

e
R

ei
ch

’s
 A

vi
at

io
n

M
in

is
tr

y

N
am

e
Y

ea
rs

O
rd

er
ed

 b
y

Ty
pe

Te
ch

no
lo

gy
St

at
us

St
at

us

V
1

19
36

–1
93

8
A

lg
eb

ra
ic

M
ec

ha
ni

ca
l

E
xp

er
im

en
ta

l
D

es
tr

oy
ed

V
2

19
39

–1
94

0
A

lg
eb

ra
ic

R
el

ay
s,

 m
ec

ha
ni

ca
l m

em
or

y
E

xp
er

im
en

ta
l

D
es

tr
oy

ed

V
3

19
39

–1
94

2
D

V
L

A
lg

eb
ra

ic
R

el
ay

s,
 6

4
m

em
or

y
ce

lls
E

xp
er

im
en

ta
l

D
es

tr
oy

ed

V
4

19
42

–1
94

5
R

L
M

A
lg

eb
ra

ic
R

el
ay

s,
 m

ec
ha

ni
ca

l m
em

or
y

C
om

m
er

ci
al

Pr
es

er
ve

d

S1
19

42
H

FW
Sp

ec
ia

l-
pu

rp
os

e
R

el
ay

s
U

se
d

D
is

as
se

m
bl

ed

S2
a

19
43

–1
94

4
H

FW
Sp

ec
ia

l-
pu

rp
os

e
R

el
ay

s
U

nu
se

d
D

is
as

se
m

bl
ed

S2
b

H
FW

A
ut

om
at

ic
 s

en
si

ng
R

el
ay

s
U

nu
se

d
D

is
as

se
m

bl
ed

L
3

19
44

L
og

ic
R

el
ay

s
T

he
or

et
ic

al

R
1

19
40

–1
94

5
R

L
M

V
ac

uu
m

 tu
be

s
E

xp
er

im
en

ta
l

D
es

tr
oy

ed

12 1 Konrad Zuse and the Dawn of the Computer Age

The Plankalkül (calculus of programs) was the world’s first high-level program-
ming language (Zuse 1972). It was designed by Zuse between 1939 and 1945, at a
time when the first computers were being built in the USA, United Kingdom, and
Germany. It represents one of the most important contributions to the history of
ideas in the field of computing, although it was first implemented in 1999 by our
research team in Berlin.

The Plankalkül corresponds to Zuse’s mature conception of how to build a
computer and how to allocate the total computing work to the hardware and software
of a machine. Zuse called the first computers he built “algebraic” in contrast to
the “logistic machines” (Zuse 1943). The former were built specifically to handle
scientific computations, while the latter could handle both scientific and symbolic
processing problems. In modern computers, there are two ALUs, one for integers
and one or more for floating-point operations. It would not have been impossible
to do logic operations in the Z3 or Z4, but it is cumbersome to do so with floating-
point registers. For Zuse, the distinction between algebraic and logical computation
emphasized the need for two types of machines. In fact, in 1950, he applied for
a patent for a “combined machine” with a floating-point processor and a logic
processor running in parallel and with a common memory unit (Zuse 1950).

Around 1944, Zuse greatly simplified the hardware needed to perform logic
operations. What he came to call the “logic machine” was never fully developed
(although a small prototype was built), but his design called for a one-bit word
memory and a processor that could compute only basic logic operations (conjunc-
tion, disjunction, and negation). It was a sort of minimalist computer in which the
memory consisted of a long chain of bits that could be grouped in any way to
represent numbers, characters, arrays, and so on. In some ways, the logistic machine
resembles Alan Turing’s 1936 proposal for what we now call a Turing machine.

The Plankalkül was the software counterpart of the logistic machine. Complex
structures could be built as arrays of elementary ones, the simplest being a single bit.
Today we would call Zuse’s arrays multidimensional “tensors,” but the addressing
was more in the form of a tree. A matrix, for example, would be a tree with
rows hanging from the root. An element in the matrix could be addressed by first
specifying the row and then the element in the row.

Also, sequences of instructions could be grouped into subroutines and functions,
so that the user was dealing only with a powerful high-level instruction set
that masked the complexity of the underlying hardware. The Plankalkül strongly
exploited the concept of modularity, so important in computer science today:
multiple layers of software made the hardware invisible to the programmer. The
hardware itself only had to execute a minimal set of instructions.

In Plankalkül, the programmer uses variables to store the results of computations.
There are no separate variable declarations: any variable can be used in any part of
the program, and its type is written along with its name. Variable assignment is done
as in modern imperative programming languages, where a new value overwrites
the old one. Many operations are those used in modern programming languages
(addition, subtraction, etc.). Plankalkül is universal. It can handle conditional
instructions of the type “IF-THEN-ELSE” and provides an iteration operator W,

1.6 Rebirth of Zuse’s Company 13

which repeats the execution of a sequence of instructions until a terminal condition
is met. Using these constructs, any kind of computation can be expressed with
Plankalkül.

When Zuse started to develop the Plankalkül, he wanted to develop a complete
“calculus of programs.” In the case of algebraic expressions, he wrote, we can
equate a quadratic polynomial to zero and, by applying algebraic rules, derive
an explicit formula for its roots. He aspired to do the same for the predicate
calculus. However, this would have involved developing automatic proof methods
for general formulas of the predicate calculus, a very ambitious undertaking. In the
1972 edition of Plankalkül, Zuse wrote that solving general logic formulas “is not
so easy.” Consequently, this problem was not further explored in the manuscript.
Nevertheless, Zuse emphasized that Plankalkül served both as a notation for
describing logical concepts and as an algorithmic language capable of facilitating
various computations (Zuse 1972).

Although Zuse published some small papers about the Plankalkül and tried
to make it known in Germany, it never generated enough interest. The main
problems were its ambitious scope, the large number of possible commands,
its modular architecture requiring incremental compilation, and the presence of
dynamic structures, set-theoretic operations, and functionals. Some aspects of
the definition were ambiguous, and the lack of type checking would have made
debugging extremely difficult. A practical implementation of Plankalkül certainly
requires a major revision of Zuse’s 1945 draft. However, Plankalkül was very much
ahead of its time, considering that many of the concepts on which it was based would
be rediscovered much later (including logic and functional programming). Decades
would pass before programming languages reached the level of sophistication of
Plankalkül.

1.6 Rebirth of Zuse’s Company

After the war, in 1947, Zuse restarted his company as Zuse Ingenieurbüro. It had
a new lease of life when Prof. Eduard Stiefel of the Eidgenossische Technische
Hochschule (ETH) in Zurich went to Bavaria to see the refurbished Z4 in operation.
He decided to lease/buy the machine for his university. With this funding and
some partners, Zuse restarted his company for the second time in 1949 as Zuse
Kommanditgesellschaft.

The Z4 was installed in Zurich in 1950, several months before the first UNIVAC
was delivered in the United States (Stern 1981; Bruderer 2012), and was thus the
first commercial computer in the world. For several years, the Z4 was also the only
commercial computer installed in continental Europe. The machine had the same
logical structure as the Z3, but contained more memory and an expanded instruction
set. It was used at the ETH for 5 years and is now part of the historical collection of
Deutsches Museum in Munich. It is the only Zuse machine built before 1945 that
has survived.

14 1 Konrad Zuse and the Dawn of the Computer Age

Zuse’s company (with the new name “Zuse KG”) flourished after the war, and
many more machines were built. They were all numbered progressively according
to their introduction, i.e., Z5, Z11, and so on. For some years, Zuse continued to
build relay computers and even advocated the use of micromechanical elements.
Gradually, however, electronic components were miniaturized, their reliability
increased, and with the dominance of American companies in this field, Zuse KG
had no choice but to develop vacuum tube and transistor-based machines. Zuse
KG’s first transistorized computer was the Z23, a commercial success: 80 machines
were shipped to customers in Germany and 18 to other countries. The Deutsche
Forschungsgemeinschaft actively promoted the machine and subsidized universities
that bought it. The Z23 was the computer used to start many computer science
programs in Germany.

The Z23 and the Z22 (the latter built with vacuum tubes) were remarkable in
that they represented the first radical departure from the architecture of all previous
Zuse machines. Their internal structure consisted of serial registers, which required
fewer components. The number of instructions was kept to a minimum. A compiler
allowed programmers to write code with a syntax somewhere between assembly
code and a high-level programming language. Machines such as the Z22 and Z23
were largely designed by Zuse’s engineers.

Another important development, and Zuse’s final encore, was the introduction in
1961 of the Graphomat, a plotter that could be used by architects and geologists
to plot diagrams and drawings. The Graphomat could be connected to Zuse’s
computers and used special gears to provide smooth, continuous motion in any
direction. The gears were designed by Zuse himself.

The Z23 and the Graphomat were successful, but development of the next line of
computers proved too costly. Eventually, the dominance of the American computer
industry in Europe, as well as the late adoption of an all-electronic design, brought
Zuse KG into financial difficulties. The company accepted an industrial investor,
but was later sold to Brown Boveri and Co. in 1964. Seventy percent was then sold
to Siemens in 1967 and the remainder in 1969. Production of the Zuse series of
computers was discontinued. Zuse retired after the Siemens takeover and received
a pension. In the years that followed, he continued to write, apply for patents, and
argue for his place in the history of computing.

In retrospect, it can be said that Konrad Zuse’s greatest achievement was the
development of a family of fully digital, floating-point, programmable machines
built in almost total intellectual isolation from 1936 to 1945. His dream was to create
a small computer for business and scientific applications. He worked tirelessly for
many years to achieve this goal. Unfortunately, his 1941 patent application (Zuse
1941) for the Z3 computing machine was rejected by a German judge in 1967 for
lack of “inventiveness.” The decision on the application was delayed so long because
of the war and because the major computer companies fought in court against Zuse,
who always considered himself the one and only inventor of the computer. His
public statements on the subject sometimes revealed some bitterness about his lack
of recognition in other countries.

1.7 Epilogue 15

1.7 Epilogue

Konrad Zuse married Gisela Brandes in 1945, before Berlin was under siege. Gisela
gave birth to their first son a few months later, and four more children followed in
the ensuing years. However, Konrad Zuse was not a family man—over the years his
obsession was to build new and better machines. After his retirement, he received
many honors in Germany, including the Federal Cross of Merit and the Siemens
Ring. In 1999, he was named a Fellow of the Computer Museum in California. He
received numerous honorary doctorates and an honorary professorship. In addition,
the most important German prize in the field of computer science bears his name.

His early machines have been reconstructed: a model of the Z1 was built by Zuse
himself in the 1980s and is on display at the German Museum of Technology in
Berlin (Schweier and Saupe 1988). The Z3 was reconstructed by Zuse’s engineers in
1960 and has been part of the historical collection of Deutsches Museum in Munich
since 1969. A new functional replica of the Z3, with smaller relays, was built by
us in Berlin in 2001 and is on display in the Zuse Museum in Hünfeld, Germany,
which also houses several computers of the Zuse KG. Konrad Zuse’s notebooks and
documents were sold to Deutsches Museum in 2006, where they are now stored in
the library’s stacks and digital archives.

It has often been said that the computer was a by-product of World War II, or
at least that its birth was catalyzed by the events surrounding the conflagration.
In the case of Konrad Zuse, this is only partially true. The inspiration for his first
computing machine, the Z1, predates the war. The 6 months Zuse spent at the front
in 1939–1940 were certainly an interruption in the project he had been working
on for almost 3 years. Without the war, the Z3 would have been finished sooner.
But once the war broke out, Zuse was able to convince the military establishment
that calculating machines were useful for aerodynamic calculations. The successful
demonstration of the Z2 prototype led to a contract with the DVL, which financed
most of the construction of the Z3. Once the Z3 was operational, Zuse developed
the special-purpose machines S1 and S2 and began building the more powerful
computing machine he had been dreaming of all these years, the Z4.

Although at the time almost no one in Germany fully understood the significance
of Zuse’s work, at least those responsible for the strategic management of aeronau-
tical research and development recognized the importance of fast computing. It is
noteworthy that Zuse was able to leave the front twice, and that he was partially
relieved of his day-to-day responsibilities at Henschel-Flugzeug-Werke to take care
of his own company. This would not have happened if the military experts had not
thought that his commercial work was useful and necessary for the war effort.

Konrad Zuse was certainly no resistance hero, but it is true that he never sought
political office or a position in the academic or industrial establishment. While
professors and researchers at German universities, especially at the TH Berlin,
flocked to the Nazi Party to further their careers, Zuse’s own vocation was cut short
by the war. Unfortunately, not much is known about his political views at the time. In
his memoirs, Zuse devotes only a few paragraphs to the regime and politics during

16 1 Konrad Zuse and the Dawn of the Computer Age

the war. Ideologically, he was very impressed by Oswald Spengler’s theory of the
decline of Western civilization. He continued to mention Spengler even in his later
years.

It was probably Konrad Zuse’s personal misfortune that he conceived all the
elements of the computer earlier and more elegantly than the other computer
pioneers of his time (except Turing), but that he lived in Germany when the country
was on its way to a war of aggression and eventual self-destruction. Outside the
country, and outside a very small circle in Berlin, no one took notice of the Z1, Z2,
Z3, and Z4. The S1 and S2 were secret machines. Zuse’s work was not rediscovered
until the late 1940s, but it was too late for his machines to have a major impact on
the design and construction of modern electronic computers. Zuse’s work became,
at best, a footnote in early scholarly books on the history of computing. This has
changed in recent decades as more has become known about the life and work of
this most remarkable computer pioneer (Bruderer 2020).

References

Aiken, H.H., and G.M. Hopper. 1982. The Automatic Sequence Controlled Calculator. In The
Origins of Digital Computers, Monographs in Computer Science, ed. B. Randell, 203–222.
Berlin: Springer. https://doi.org/10.1109/EE.1946.6434251.

Bruderer, H. 2012. Konrad Zuse und die Schweiz: Wer hat den Computer erfunden? Munich:
Oldenbourg Wissenschaftsverlag. https://doi.org/10.1524/9783486716658.

Bruderer, H. 2020. Milestones in Analog and Digital Computing. Vols. 1 and 2, 3rd ed., 2075.
Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-030-40974-6.

Burks, A.W., and A.R. Burks. 1981. The ENIAC: First General-Purpose Electronic Computer.
Annals of the History of Computing 3 (4): 310–399, https://doi.org/10.1109/MAHC.1981.
10043.

Burks, A.R., and A.W. Burks. 1988. The First Electronic Computer – The Atanasoff Story. Ann
Arbor: The University of Michigan Press.

Campbell-Kelly, M., W. Aspray, N. Ensmenger, and J.R. Yost. 2013. Computer: A History
of the Information Machine. 3rd ed. The Sloan Technology Series. https://doi.org/10.4324/
9780429495373.

Kurrer, K.E. 2010. Konrad Zuse und die Baustatik – Zur Vorgeschichte der Computerstatik (Teil
I). Bautechnik 87 (11). https://doi.org/10.1002/bate.201010046

Rojas, R. 1997. Konrad Zuse’s Legacy: The Architecture of the Z1 and Z3. IEEE Annals of the
History of Computing 19 (2): 5–16. https://doi.org/10.1109/85.586067.

Rojas, R. 2001. Konrad Zuse – War der Erfinder des Computers doch kein Musterschüler?
Telepolis.de

Schweier, U., and D. Saupe. 1988. Funktions- und Konstruktionsprinzipien der Program-
mgesteuerten Rechenmaschine “Z1”. Arbeitspapiere der Gesellschaft für Mathematik und
Datenverarbeitung 321.

Stern, N. 1981. From ENIAC to UNIVAC. Bedford: Digital Press.
Zuse, K. 1936. Die Rechenmaschine des Ingenieurs. Deutsches Museum Digital. http://digital.

deutsches-museum.de/item/NL-207-0209/.
Zuse, K. 1936d. Patentanmeldung Z 23 139 IX / 42m: Verfahren zur selbsttätigen Durchführung

von Rechnungen mit Hilfe von Rechenmaschinen [für Zuse]. Deutsches Museum Digital.
http://digital.deutsches-museum.de/item/NL-207-0990/.

https://doi.org/10.1109/EE.1946.6434251
https://doi.org/10.1109/EE.1946.6434251
https://doi.org/10.1109/EE.1946.6434251
https://doi.org/10.1109/EE.1946.6434251
https://doi.org/10.1109/EE.1946.6434251
https://doi.org/10.1109/EE.1946.6434251
https://doi.org/10.1109/EE.1946.6434251
https://doi.org/10.1109/EE.1946.6434251
https://doi.org/10.1524/9783486716658
https://doi.org/10.1524/9783486716658
https://doi.org/10.1524/9783486716658
https://doi.org/10.1524/9783486716658
https://doi.org/10.1524/9783486716658
https://doi.org/10.1524/9783486716658
https://doi.org/10.1007/978-3-030-40974-6
https://doi.org/10.1007/978-3-030-40974-6
https://doi.org/10.1007/978-3-030-40974-6
https://doi.org/10.1007/978-3-030-40974-6
https://doi.org/10.1007/978-3-030-40974-6
https://doi.org/10.1007/978-3-030-40974-6
https://doi.org/10.1007/978-3-030-40974-6
https://doi.org/10.1007/978-3-030-40974-6
https://doi.org/10.1007/978-3-030-40974-6
https://doi.org/10.1007/978-3-030-40974-6
https://doi.org/10.1109/MAHC.1981.10043
https://doi.org/10.1109/MAHC.1981.10043
https://doi.org/10.1109/MAHC.1981.10043
https://doi.org/10.1109/MAHC.1981.10043
https://doi.org/10.1109/MAHC.1981.10043
https://doi.org/10.1109/MAHC.1981.10043
https://doi.org/10.1109/MAHC.1981.10043
https://doi.org/10.1109/MAHC.1981.10043
https://doi.org/10.4324/9780429495373
https://doi.org/10.4324/9780429495373
https://doi.org/10.4324/9780429495373
https://doi.org/10.4324/9780429495373
https://doi.org/10.4324/9780429495373
https://doi.org/10.4324/9780429495373
https://doi.org/10.1002/bate.201010046
https://doi.org/10.1002/bate.201010046
https://doi.org/10.1002/bate.201010046
https://doi.org/10.1002/bate.201010046
https://doi.org/10.1002/bate.201010046
https://doi.org/10.1002/bate.201010046
https://doi.org/10.1002/bate.201010046
https://doi.org/10.1109/85.586067
https://doi.org/10.1109/85.586067
https://doi.org/10.1109/85.586067
https://doi.org/10.1109/85.586067
https://doi.org/10.1109/85.586067
https://doi.org/10.1109/85.586067
https://doi.org/10.1109/85.586067
http://digital.deutsches-museum.de/item/NL-207-0209/
http://digital.deutsches-museum.de/item/NL-207-0209/
http://digital.deutsches-museum.de/item/NL-207-0209/
http://digital.deutsches-museum.de/item/NL-207-0209/
http://digital.deutsches-museum.de/item/NL-207-0209/
http://digital.deutsches-museum.de/item/NL-207-0209/
http://digital.deutsches-museum.de/item/NL-207-0209/
http://digital.deutsches-museum.de/item/NL-207-0209/
http://digital.deutsches-museum.de/item/NL-207-0209/
http://digital.deutsches-museum.de/item/NL-207-0990/
http://digital.deutsches-museum.de/item/NL-207-0990/
http://digital.deutsches-museum.de/item/NL-207-0990/
http://digital.deutsches-museum.de/item/NL-207-0990/
http://digital.deutsches-museum.de/item/NL-207-0990/
http://digital.deutsches-museum.de/item/NL-207-0990/
http://digital.deutsches-museum.de/item/NL-207-0990/
http://digital.deutsches-museum.de/item/NL-207-0990/
http://digital.deutsches-museum.de/item/NL-207-0990/

References 17

Zuse, K. 1937. Einführung in die allgemeine Dyadik. Deutsches Museum Digital. http://digital.
deutsches-museum.de/item/NL-207-0210/.

Zuse, K. 1941. Patentanmeldung Z-391. German Patent Office, Berlin.
Zuse, K. 1943. Rechenplangesteuerte Rechengeräte für technische und wissenschaftliche Rech-

nungen. Deutsches Museum Digital. http://digital.deutsches-museum.de/item/NL-207-0217/.
Zuse, K. 1946. Zur Entwicklung von Rechengeräten bis zum Jahre 1945. Nennung von Namen und

finanziellen Unterstützungen. Available online at the Zuse Internet Archive.
Zuse, K. 1950. Patentschrift Nr.926449, Kombinierte numerische und nichtnumerische Rechen-

maschine. Deutsches Patentamt, 11 Seiten.
Zuse, K. 1970. Der Computer – Mein Lebenswerk. Landsberg: Verlag Moderne Industrie,
Zuse, K. 1972. Der Plankalkül. 63, Berichte der Gesellschaft für Mathematik und Datenverar-

beitung, Sankt Augustin.

http://digital.deutsches-museum.de/item/NL-207-0210/
http://digital.deutsches-museum.de/item/NL-207-0210/
http://digital.deutsches-museum.de/item/NL-207-0210/
http://digital.deutsches-museum.de/item/NL-207-0210/
http://digital.deutsches-museum.de/item/NL-207-0210/
http://digital.deutsches-museum.de/item/NL-207-0210/
http://digital.deutsches-museum.de/item/NL-207-0210/
http://digital.deutsches-museum.de/item/NL-207-0210/
http://digital.deutsches-museum.de/item/NL-207-0210/
http://digital.deutsches-museum.de/item/NL-207-0217/
http://digital.deutsches-museum.de/item/NL-207-0217/
http://digital.deutsches-museum.de/item/NL-207-0217/
http://digital.deutsches-museum.de/item/NL-207-0217/
http://digital.deutsches-museum.de/item/NL-207-0217/
http://digital.deutsches-museum.de/item/NL-207-0217/
http://digital.deutsches-museum.de/item/NL-207-0217/
http://digital.deutsches-museum.de/item/NL-207-0217/
http://digital.deutsches-museum.de/item/NL-207-0217/

Chapter 2
The Race to Build the Computer
in World War II

This chapter traces the invention of the computer in several countries during the
interwar period and up to 1945, concentrating on events in Germany and comparing
Zuse’s machines with those invented in the USA. In the second part, we look at
Helmut Schreyer’s electronic prototype and some aspects of his life and work during
the Second World War.

2.1 Berlin Between the Wars

The armistice between the Entente powers and Germany was signed on November
11, 1918, effectively ending the First World War with the defeat of Germany. The
peace document, the Treaty of Versailles, was signed a year later on June 28. But
after 4 years of war, Germany could not be stabilized. Peace in Europe did not mean
peace within Germany itself. It would only be 20 years before most of Europe was
engulfed in the continuation of the war.

Two days before the signing of the Armistice in 1918, the German Kaiser was
forced to resign, and Germany was transformed into a republic. Under the Treaty
of Versailles, Germany had to give up its overseas colonies, lost 13% of its territory
in Europe, could not have an air force, and had to pay onerous reparations to the
Allies. The 132 billion gold marks in payments was three times Germany’s pre-war
annual gross domestic product. The effect on the country was devastating, as the
famous economist John Maynard Keynes had predicted. In his book “The Economic
Consequences of the Peace,” he argued that reparations would ruin Germany and
create economic instability in Europe. And so it did, setting the stage for the rise of
the Nazi Party.

The Weimar Republic was the democratic government established after the end
of the German Empire (the new constitution was adopted in the city of Weimar).
Economically, this period was marked by the global recession of the 1930s and

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Rojas, Konrad Zuse’s Early Computers, History of Computing,
https://doi.org/10.1007/978-3-031-39876-6_2

19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39876-6protect T1	extunderscore 2&domain=pdf
https://doi.org/10.1007/978-3-031-39876-6_2
https://doi.org/10.1007/978-3-031-39876-6_2
https://doi.org/10.1007/978-3-031-39876-6_2
https://doi.org/10.1007/978-3-031-39876-6_2
https://doi.org/10.1007/978-3-031-39876-6_2
https://doi.org/10.1007/978-3-031-39876-6_2
https://doi.org/10.1007/978-3-031-39876-6_2
https://doi.org/10.1007/978-3-031-39876-6_2
https://doi.org/10.1007/978-3-031-39876-6_2
https://doi.org/10.1007/978-3-031-39876-6_2
https://doi.org/10.1007/978-3-031-39876-6_2

20 2 The Race to Build the Computer in World War II

hyperinflation in Germany, especially in the years 1921–1924. The unrest in the
country and the impossibility of paying reparations led to the signing of the Dawes
Plan, which granted international loans to Germany and modified the reparations
system, linking it to a percentage of German exports.

Politically, the Weimar Republic was a period of social unrest. Between 1919
and 1933, before Adolf Hitler came to power, there were 14 different German
chancellors. Some of them lasted less than a year, as the alignment of the parties
represented in the Reichstag (the parliament) was constantly changing. The Social
Democratic Party was the largest, but it was surrounded by many smaller nationalist
and radical groups.

Meanwhile, the USA was struggling with the Great Depression of the 1930s. The
worst years were 1929–1933, but the depression lasted until 1939. We recognize
these dates immediately: Adolf Hitler became chancellor of Germany in 1933, and
the Second World War started in 1939.

2.1.1 Science and Art in Berlin

It is paradoxical that while Germany was engulfed in social chaos and unrest, the arts
and sciences flourished. The end of the Empire opened the door to democracy and
experimentation in all fields, so much so that this period has been called the “Weimar
Renaissance.” Writers such as Thomas Mann, Bertolt Brecht, and Franz Kafka
were very active, while young composers and painters flocked to the metropolis.
Berlin was the cultural center of the country, the city of freedom and openness.
The “Großstadt” was an ambivalent mix of cultural vibrancy, poverty, and political
violence.

Berlin was also the capital of science in Germany during the inter-war period.
Between 1919 and 1932 alone, 16 Nobel Prizes were awarded to German scientists
and artists—14 of them with connections to Berlin (Meyer 2000). Among them
were Albert Einstein, who received the prize in 1921, Fritz Haber (1919) and Gustav
Hertz (1922) (Fig. 2.1).

It was in this context that two people who would later play a significant role in the
history of computing arrived in the city. The first was the Hungarian János (John)
von Neumann, who lived in Berlin between 1926 and 1930. He was a multifaceted
scientist who had studied chemistry, physics, and the foundations of mathematics
at the ETH in Zurich and also in Berlin. He received his PhD in mathematics from
the University of Budapest in 1926 at the age of 23. In Berlin, he was not a full
professor but a Privatdozent and moved to Princeton when he was invited to work
at the Institute for Advanced Studies. It was there that he met Alan Turing a few
years later.

The second person was, of course, Konrad Zuse. It is not hard to imagine the
young Zuse crossing paths with von Neumann in the street. Neither of them would
have guessed how closely their later work would be intertwined.

2.1 Berlin Between the Wars 21

Fig. 2.1 A meeting between the Nobel Prize winners Walther Nernst, Albert Einstein, Max
Planck, Robert Andrews Millikan, and Max von Laue (Image: Wikimedia Commons)

2.1.2 The Years of Computability

The computer first appeared as a theoretical object. The Princeton mathematician
Alonzo Church published a paper in 1932 entitled “A Set of Postulates for the
Foundation of Logic” in which he proposed the lambda calculus, a logical approach
to mathematics and computability. What Church achieved with this and other papers
was to show that all mathematical objects can be reduced to functions, and that
mathematical computations can be expressed as functions acting on functions. The
natural numbers, for example, are themselves functions. The number one can be
understood as the function that applies a function once to another function. The
number two applies the function twice, and so on. Church could define functions
for addition, subtraction, multiplication, division that could act on natural numbers,
thus covering the whole range of possible arithmetic operations. His way of defining
numbers already provided a method for implementing loops (a fixed number of
repeated applications of a function to data), but he was also able to show that there
was a way of applying functions recursively until a condition was satisfied, pro-
viding a way to simulate the WHILE structure of modern programming languages.
From today’s point of view, lambda calculus is just another programming language,
albeit a symbolic one. This explains the Church thesis: anything computable can be
computed by the lambda calculus. Note that we call this statement a thesis, not a
theorem, because it is just one possible definition of a computable function.

While Church was immersed in the lambda calculus at Princeton, Alan Turing
was taking a different approach at Cambridge. He was interested in solving one of
the problems formulated by the German mathematician David Hilbert at the turn

22 2 The Race to Build the Computer in World War II

of the century. It was the famous Decision Problem, which required proof of the
existence of a finite mathematical procedure that could determine whether or not a
given mathematical proposition follows from a list of axioms. To solve the problem,
Turing invented what is now called a “Turing machine,” which is a small processor
with states and state transitions that operates on an unbounded string of symbols
stored on a tape. There is a read/write head that moves along the tape, allowing the
processor to modify the symbols one at a time. The current state and the symbol
under the read/write head initiate a transition to a new state, replacing the previous
symbol and then moving the read/write head one position to the left or right.

Turing was able to show that it is possible to implement many useful functions
using his theoretical machine (that is, one can design the table of states and state
transitions that are needed by the processor). We can have one machine for addition,
another for multiplication, another for division, and so on. But then, Turing showed
that it is possible to define a “universal machine,” that is, one that can read any table
of state transitions from its tape and apply it to symbols that are also stored in the
tape. So we need only one Turing machine, the universal one, with its states and state
transitions, and we need a memory (the tape) where we keep any specific table for a
specific function and the data we want to use. The Universal Turing Machine is the
“hardware” of our computer and the tables encoded in the tape are the “software” for
a specific computation. This was all described in Turing’s 1936 paper entitled “On
Computable Numbers, with an Application to the Entscheidungsproblem,” which
appeared in the Proceedings of the London Mathematical Society. Turing’s approach
made it possible to define computability in terms of his universal machine, which is
equivalent to the lambda calculus. This is why we now speak of the “Church-Turing
thesis”: what is computable by humans can be computed using the lambda calculus
or a Turing machine (Fig. 2.2).

This is where the theory of computability began: at Princeton in a more
theoretical and at Cambridge in a more operational way, so that theorists would later
spend much time searching for the smallest possible Universal Turing Machine (in
terms of the number of states and symbols used).

In 1936, there was also a person investigating the logical capabilities of relay
circuits. It was Claude Shannon, who would later become the father of information
theory. A year later, he submitted his master’s thesis entitled “A Symbolic Analysis
of Relay and Switching Circuits” to the Massachusetts Institute of Technology
(MIT). There he studied the manipulation of binary variables using Boolean algebra
with electronic circuits based on relays and switches.

We can then say that in 1936/1937, the invention of the computer was something
that was being considered from a theoretical point of view by researchers such as
Church and Turing and by engineers like Shannon and Konrad Zuse. But there was
no sense of urgency, all these investigations were proceeding at their own pace, not
dictated by any external pressure. There were many simple mechanical calculating
machines in use at the time. There were also analog computers for solving
differential equations. Vannevar Bush had just built his“Differential Analyzer” at
MIT, where he represented continuous variables by the movement of gears and
mechanical rods.

2.1 Berlin Between the Wars 23

Fig. 2.2 Transcript of Alan Turing for his PhD work at Princeton University (Image: University
Archives Princeton University)

Nor should we forget the Hollerith punch card machines, which were used in
many companies to process statistical data and for other purposes. Invented by
Hermann Hollerith in the 19th century, they provided massive processing power (for
the time) for handling company databases. The company that sold these machines
was IBM, formed in 1911 through a merger of companies that brought the rights to
the Hollerith machines into its fold. Since the 1930s, IBM sold Hollerith tabulators
for counting and sorting large amounts of data, collators that could combine
information from multiple cards, punchers that could copy cards, and verifiers that
could check cards. It was also possible to hardwire a specific calculation that had to
be repeated for a deck of cards (using plug-in modules).

If we were to pinpoint a year that could be considered foundational in computing
history, it would undoubtedly be 1936. That was the year that Alonzo Church was
developing his theories in Princeton, Alan Turing was taking major steps forward
in Cambridge, Claude Shannon was finishing his degree, and Konrad Zuse made
the crucial decision to leave his position at Henschel Flugzeugwerke and found
the world’s first computer company. When the time is right, invention happens
simultaneously.

24 2 The Race to Build the Computer in World War II

2.2 Computers in Wold War II

1933 was a dramatic year in Germany. The chaotic situation in the country led
to a rapid rise in the vote for the National Socialist Party of Adolf Hitler, who
was appointed Chancellor on January 31, 1933 (although his party did not have a
majority in the Reichstag). This date marks a turning point in German history. Albert
Einstein and many Jewish scientists were forced to leave the country. Democratic
institutions rapidly deteriorated under Hitler’s regime, and on March 23, 1933,
less than 2 months after Hitler became Chancellor, the Enabling Act granted him
sweeping dictatorial powers, which he would immediately use to begin planning for
the next war. There were only three more elections to the Reichstag before the war,
but only the Nazi party was allowed to participate.

The second European war ignited slowly. First, Hitler stepped up the rearmament
of Germany. This had already begun in the 1920s, with some companies building
dual-use civilian aircraft that could also be used for military purposes. In 1936, the
German army occupied the Rhineland, which was supposed to be a demilitarized
buffer zone under the Treaty of Versailles. Then, on March 12, 1938, Hitler annexed
Austria to the Third Reich. In September, he occupied part of the Czech Republic.
A year later, Hitler invaded Poland, forcing Britain and France to finally declare war
on Germany (Fig. 2.3).

When war broke out, there was a sense of urgency in Europe and in particular
an urgency to develop machines that could break Germany’s secret codes. Indeed,
within days of the invasion of Poland, Alan Turing was recruited to the Government
Code and Cypher School at Bletchley Park, near London, where he would work
with other fellow cryptographers for the next 3 years.

2.2.1 John Atanasoff’s ABC

Of all the computer pioneers, only three began building their respective machines
before the war: Konrad Zuse (1936), Howard Aiken, who had been seeking funding
for his machine since 1937, and John Atanasoff, who began building his “Atanasoff-
Berry computer” in 1938.

Atanasoff and his assistant Clifford Berry built their electronic computer at the
University of Iowa between 1938 and 1942. While all other computers at the time
used parallel arithmetic hardware, Atanasoff chose a serial approach. Two rotating
drums stored up to 30 fixed-point numbers. Each number was stored in one sector of
the drum (out of 30 sectors) using 50 capacitors, i.e., 50 bits. The capacitors could
be charged (representing a one) or discharged (representing a zero). As the two
drums rotated, fixed sensor heads could sequentially read the bits of two vectors (one
for each drum), and the electronics could operate on pairs of numbers to produce
a new vector, which was stored in one of the two drums. The machine was used
to reduce rows of a matrix representing a set of simultaneous equations (with up

2.2 Computers in Wold War II 25

Fig. 2.3 The map of Europe in 1941–1942, showing the advance of the Axis forces. Most of
continental Europe was occupied. Spain was neutral, but was a tacit ally of Germany (Image: see
page 223)

to 29 variables). One of the vectors was used to reduce the other, iteratively. The
leading coefficient of the second vector was reduced to zero using the first vector
and a combination of additions, subtractions, and shifts. The drums rotated once per
second. The bits from the two vectors could be added sequentially using a small
vacuum tube circuit. A shift could be performed by reading and rewriting the bits of
a number, shifting them by one position (Randell 1982). The reduced vector could
be stored as binary marks on a sheet of special paper. The vector could reloaded
onto a drum reading the paper marks.

It is important to note that the ABC was not fully automatic, as this description
makes clear. The machine required a human to operate on the vectors with the
switches and select the next operation to be performed. The operator had to load
each vector into a drum and command the storage of intermediate results. This was
a computer, but one with a “driver” who followed the Gaussian reduction algorithm
by pressing buttons until a solution to the system of linear equations was found. Of

26 2 The Race to Build the Computer in World War II

course, the machine was not universal, as it could not work continuously on its own.
It was a special-purpose semiautomatic machine.

2.2.2 The Harvard Mark I

Howard Aiken led the construction of the Harvard Mark I at Harvard University
between 1939 and 1944. He had been designing the machine since 1937, initially
calling it the “Automatic Sequence Controlled Calculator.” Aiken successfully
secured funding from IBM in February 1939, with additional support later from the
US Navy. Like Atanasoff, Aiken was a physicist who wanted to create a machine
capable of performing the extensive calculations he needed. The Mark I was an
electromechanical machine, like Zuse’s Z4. It was a sort of hybrid between the
mechanical nature of the Hollerith machines and the electronics available at the
time. The machine was built by IBM and shipped to Harvard in February 1944. It
was officially unveiled on August 7, 1944. It was a massive undertaking, containing
765,000 electromechanical components. They were synchronized with a rotating
15 m long metal shaft.

Aiken used the decimal system for the internal representation of numbers.
Rotating gears were used to store and transmit numbers in memory (with 23 decimal
digits). There was no sharp distinction between processor and memory, since each
of the 72 memory cells was an accumulator capable of adding or subtracting the
integers (fixed-point numbers) transmitted to it (Aiken and Hopper 1982). Each
accumulator could transfer its contents to any other accumulator via what we would
now call a bus. There were additional units to store tables of numbers and also a
multiplier and a divider unit. Sixty constants could be set manually by the operator.
The program was stored on a punched paper tape, and two reading units made it
possible to run two programs in parallel. For checking purposes, the same program
could be run twice. The code specified from which accumulator to read and to which
accumulator to send the result. If two variables were needed (for a multiplication,
for example), two punched cards were needed to specify the three accumulators
involved (two for input and one for output) (Fig. 2.4).

The Mark I was not universal because it lacked conditional branching. Loops
could be implemented by loop unrolling or by connecting the two ends of the
control tape. An initial start tape initialized all parameters before the looped tape
was inserted into the tape reader.

From this description, one might assume that the Mark I was similar to the Z4,
and indeed it is, but the Mark I was a massive machine. The number of instructions
was embarrassingly large, and there were also interpolation tables for functions such
as logarithms, exponentials, and trigonometric functions. The oversized instruction
set actually made it quite difficult to program the Mark I, as the programming
manual clearly shows (Hopper et al. 1946).

The Mark I was used for military purposes before the end of World War II. It
performed ballistic calculations and is believed to have been involved in calculations

2.2 Computers in Wold War II 27

Fig. 2.4 The Harvard Mark I (Hopper et al. 1946)

related to the Manhattan Project. During the 5 years of development of the Mark I
(by a team of 70 people), Zuse built the Z3 and was finishing the Z4 in Berlin.

2.2.3 The ENIAC

The Electronic Numerical Integrator and Computer (ENIAC) was built at the Moore
School of Electrical Engineering at the University of Pennsylvania between May
1943 and 1945. It solved its first problem in December 1945 and was officially
unveiled in February 1946. Until that time, a “computer” was a person who did
computational work. Indeed, this was one of the first jobs to be replaced by the
emerging “electronic brains,” as ENIAC was sometimes called (Fig. 2.5).

From a computer architecture point of view, ENIAC was a parallel dataflow
machine. There was no separation between memory and arithmetic elements.
Decimal fixed-point numbers were stored in any of 20 accumulators, each of which
could transfer its contents to any of the other accumulators, or receive a number
and add or subtract it from its stored contents (as in the Mark I). The ENIAC had
a multiplier and a divider. Since the machine operated at a clock rate of 100,000
pulses per second, the designers felt that an external program (in a punched tape)
would not fully exploit the computing speed of the ENIAC. Therefore, programs
were hardwired, connecting with cables the output of one accumulator to the input

28 2 The Race to Build the Computer in World War II

Fig. 2.5 The ENIAC at the Moore School of Engineering, UPenn (Image: Wikimedia Commons)

of another, weaving in this way a computational graph representing the complete
computation (Burks and Burks 1988).

Sequencing of operations was achieved by connecting the arithmetic units in
the desired order, even in parallel. The accumulators were asynchronous and self-
clocking. A unit that had finished its computation signaled this with a pulse to
the next unit in the computation graph. ENIAC could perform all basic arithmetic
operations, read constants stored in a special unit, and iterate a computation, since
the master controller could restart a computation thread a fixed number of times
(thus implementing a loop). The master controller could also stop a thread if an
accumulator changed its sign. Although the original ENIAC design did not include
the possibility of conditional branching, the machine operators quickly realized that
this could be done by feeding the sign of an accumulator as a start signal for an
accumulator at the beginning of a thread of computations.

But ENIAC’s claim to fame is not its outdated and cumbersome architecture.
It is its raw computing power, as it could run at the speed of vacuum tubes. It
could perform a multiplication in 200 microseconds. That was 15,000 times faster
than Zuse’s Z3 and 30,000 times faster than the Mark I for that operation. And
while Aiken’s machine marked IBM’s entry into the computer arena, the electronic
computer opened the door to several new companies that would emerge in the
following years. By the time ENIAC was officially unveiled, the war had been over
for almost 10 months.

2.2 Computers in Wold War II 29

2.2.4 Wunderwaffen and the Z4

There is another computer that is sometimes mentioned as one of the first. It is the
electronic calculating machine developed at Bletchley Park and called Colossus.
However, the machine was not really a programmable computer, it was a special-
purpose device that could try many possible decodings of the German military code
until it found the right decoding key. Colossus was fast, as was ENIAC, but it is not
a real contender for the title of the world’s first computer.

Germany had essentially lost the war by the end of 1944, but Hitler decided
not to capitulate, even though the American and Russian armies were approaching
Berlin from two sides. The map in Fig. 2.6 shows the last remaining areas under
the control of the German army by May 1945, when Germany surrendered. Konrad
Zuse had left Berlin in February and made his way from Berlin to Bavaria, avoiding
both armies. He was carrying the Z4, the only computer he had built during those
years that survived the war. With the Z4 as his only asset, Zuse would rebuild his
computer company in the years to come.

It is ironic that the Z4 was saved from destruction in Berlin because one of Zuse’s
employees arranged for its transport out of the besieged city, using the name of the

Fig. 2.6 Last remaining regions under control of the German military on May 7, 1945 (Image:
Wikimedia Commons)

30 2 The Race to Build the Computer in World War II

machine (V4 until then) to suggest that it was another of the “Wunderwaffen” that
would save Germany from defeat. More ironic still is that Zuse met Wernher von
Braun’s team during his journey to Bavaria. He tried to distance himself at all costs
from von Braun, who had been a member of the SS and was responsible for the
deployment of the V2 rockets and the bombarding of London, as well as for the
manufacture of the rockets exploiting slave workers. In Bavaria, the V4 promptly
became the Z4 and was stored in a barn, while being refurbished, until one day
a friendly Swiss mathematician came to see the unusual machine. It was Eduard
Stiefel, a professor at the ETH in Zurich, who would later rent the machine for his
mathematics institute. It was in Zurich in 1950, 8 years after construction began,
that the Z4 performed its first truly useful calculations.

2.2.5 The First Computers

As this book shows, the main flaw of the Z1, Z3, and Z4 was the lack of a conditional
branch in the instruction set. It would not have been difficult to implement: although
it is rather cumbersome when the program is stored on a tape, the necessary
mechanism would have required only a few additional components.

Sometimes the dividing line between calculating machines and universal com-
puters is drawn by distinguishing machines with externally or internally stored
programs. I have argued elsewhere (Rojas 1993) that this is not a valid criterion.
An external program can act as an interpreter of numerical data. It becomes an
integral part of the processor, and the data become the program, much as a Universal
Turing Machine works as an interpreter. I have argued that what is needed for
universal computation is a minimal instruction set and indirect addressing (Rojas
1994). Indirect addressing can be simulated by writing self-modifying programs,
so that the instruction set becomes the defining criterion. A machine with enough
memory, an accumulator, and capable of executing the instructions CLR (clear),
INC (increment), LOAD, STORE, and BZ (branch if zero) is a universal computer.
In this sense, the Z1 and Z3 were not fully fledged computers, but neither were any
of the other early machines. The ABC was a special-purpose machine for Gauss
elimination, the Harvard Mark I lacked conditional branching, although it provided
loops. The ENIAC was not even programmable by software: the building blocks had
to be hardwired in dataflow fashion. Conditional branching was available in ENIAC,
in a limited form, and self-modifying programs were out of the question.

Tables 2.1 and 2.2 show the most important information about the early
computers mentioned above. As should be clear from the tables none of them fulfills
all the necessary requirements for a universal computer. We also include the Mark
1 machine, which was built in Manchester from 1946 to 1948 because, as far as we
know, it was the first machine to meet our definition of a universal computer.

The Mark 1 was built under the direction of F.C. Williams and T. Kilburn
(Lavington 1975). This machine stored its program in a digital random access
memory implemented with CRT tubes. All the necessary instruction primitives

2.3 Helmut Schreyer and the Electronic Computer 31

Table 2.1 Comparison of architectural features

Memory and Conditional Soft/hard Self-modifying Indirect

Machine CPU separated? branching? programming? programs? addressing?

Zuse’s Z1 .� .× Soft .× . ×
Atanasoff’s .� .× Hard .× . ×
H-Mark I .× .× Soft .× . ×
ENIAC .× Partially Hard .× . ×
M-Mark 1 .� .� Soft .� . ×

Table 2.2 Some additional architectural features

Internal Fixed- or Bit-sequential

Machine coding floating-point? arithmetic? Architecture Technology

Zuse’s Z1 Binary Floating No Sequential Mechanical

Atanasoff’s Binary Fixed-point Yes Vectorized Electronic

H-Mark I Decimal Fixed-point No Parallel Electromechanical

ENIAC Decimal Fixed-point No Dataflow Electronic

M-Mark 1 Binary Fixed-point Yes Sequential Electronic

were available (in modified form), and although it lacked indirect addressing, self-
modifying programs could be written. The first program ran in June 1948 and
computed the highest proper factor of .218 by brute force. In September, Alan Turing
was appointed Reader in Mathematics at Manchester and wrote some programs for
the world’s first universal computer. His vision of universal computation, published
in 1936, the same year the Z1 memory unit was completed, had finally become
reality. Tables 2.1 and 2.2 are clear: until 1945, there was no “first” computer, in
the singular. Rather, the invention of the computer was a collective achievement that
spanned two continents and 12 years.

2.3 Helmut Schreyer and the Electronic Computer

In Germany, someone also had the idea of building an electronic computer using
vacuum tubes. It was suggested by Helmut Schreyer to Zuse when he first saw
the Z1.

Helmut Schreyer is best known as Zuse’s friend and colleague. They met around
1935 (Petzold 1985) and were members of the academic society “Motiv,” a student
association at the Technische Hochschule Berlin, now the Technical University of
Berlin. Schreyer supported Zuse, provided him with an electric jigsaw for cutting the
mechanical components of his Z1, assembled a paper tape reader for the calculating
machine, and also suggested using telephone relays and even vacuum tubes for
his computer. Schreyer is remembered today as one of the first to imagine the
construction of an all-electronic calculating machine, without actually completing it.

32 2 The Race to Build the Computer in World War II

2.3.1 The Closest Friend

Little is known about Schreyer. Some biographical fragments have been published,
but his life remains shrouded in mystery. This is surprising, considering that his
name is often mentioned as a co-inventor of the computer. For example, a website
of the Technical University of Berlin mentions Schreyer as a prominent alumnus
of the electrical engineering department. In this section, we look at the Schreyer
phenomenon and the contradiction between creativity, research, and an academic
career during World War II.

So first of all, let’s be clear: Helmut Schreyer became a member of the NSDAP in
1933. He was one of the early Hitler enthusiasts who flocked to the party in 1933. At
that time, between January and April 1933, the number of party members rose from
850,000 to over 2.5 million. The number of applications was so great that on April
19, 1933, a ban on new memberships was imposed, effective May 1, 1933. It was
not until 1937 that new members were admitted. The first members were guided by
ideology, while the latter only wanted to make a career. Schreyer’s party affiliation
is significant because it may hold the key to other important events in his life (such
as the fact that he was never called up for military service). It is also important
because Zuse’s attitude toward the political situation in Germany has sometimes
been misrepresented. For example, a fictional Zuse in Friedrich Christian Delius’
novel “The Woman for Whom I Invented the Computer” (Delius 2009) says, “There
were no party members in my circle of friends.” But no one was closer to Zuse than
Schreyer.

Helmut Theodor Schreyer was born on July 4, 1912, in the small town of
Selben, near Halle and Leipzig. He was the son of the pastor Paul Schreyer and
Martha Schreyer, née Schlaich. In the curriculum vitae for his dissertation in 1941,
Schreyer wrote: “In 1915 I came to Mosbach in Baden, where I attended elementary
school in 1919 and then the Realgymnasium, graduating in 1933. After practical
work at the General Electric Company, I began studying electrical engineering
and telecommunications at the Technical University of Berlin in November 1934,
graduating in December 1938.” (Schreyer 1941) When Schreyer began his studies
at the TH Berlin, he became a member of Motiv. According to Konrad Zuse (Zuse
1970), he visited his workshop in his parents’ living room for the first time in 1937
and immediately suggested that the mechanical machine should be converted into
an electromagnetic or electronic one. From 1938, Schreyer was a guest of Professor
Wilhelm Stäblein at the “Institute for Vibration Research,” probably as a graduate
student. The previous name of the institute was the Heinrich Hertz Institute, but
it was changed in 1933 because Hertz was of Jewish descent. Prof. Stäblein must
have held Schreyer in high esteem, because in January 1939, just one month after
Schreyer’s graduation, he became his assistant in the Department of Telephone
and Telegraph Engineering. Stäblein himself had a background in industry, having
worked in the research department of AEG from 1927 to 1936. Schreyer was one of
his first assistants, along with Herbert Raabe.

2.3 Helmut Schreyer and the Electronic Computer 33

Being a student in Germany around 1930 was very different from today’s era of
mass universities. With a population of 65 million, there were only about 100,000
students in Germany. Today, there are 2.9 million students out of a population
of 82.1 million. This means that in 1933 there were 1.5 students per thousand
inhabitants; today there are about 23 times as many. Few families could afford the
luxury of sending their children to university. Student societies and associations
were at the end of their liberal heyday and were mostly conservative (Giles 1985).
Konrad Zuse himself characterized the AV Motiv as conservative (Zuse 1970). In
the Weimar Republic, however, the elite status of the students gradually collapsed.
War returnees and the admission of women to the universities caused the number of
students to rise from 79,000 in 1914 to 125,000 in 1924. In the years that followed,
complaints about overcrowding in the universities grew louder. Students as a group
became increasingly impoverished. This created a fertile ground for radical right-
wing ideas.

Unfortunately, we do not know much about Helmut Schreyer’s exact political
views, but he certainly acted in accordance with the spirit of the times. Years
before they came to power, the Nazis were already enjoying great success in student
elections throughout Germany. One reason for this may have been the economic
crisis and the resulting lack of prospects for students. The Nationalsozialistischer
Deutscher Studentenbund was founded in 1926, but was able to take over the
presidency of the German Student Union, the umbrella organization of student
representatives, as early as 1931. The Nazis were more successful with students
than with any other social group. As part of the process of conformity, the National
Socialists ordered the transformation of student associations into “comradeships”
and placed indoctrination and military and sports exercises at the center of their
activities. Konrad Zuse tells in his memoirs that the AV Motiv changed its name
to “Comradeship Wilhelm Stier” and that he and 10 other friends volunteered for a
military exercise in the barracks (Zuse 1970).

We know that Zuse was called to the front twice (in 1939, when the war broke
out, and in 1942, for only a week). The first time, in November 1939, Schreyer wrote
to request Zuse’s exemption from military service (Schreyer 1939). He referred to
the computing machine under construction (the Z3) and its importance for scientific
and military applications. The second time, Prof. Werner Osenberg helped Zuse as
part of his crusade to encourage the return of scientists from the front. Osenberg, a
member of the SS, was the head of the planning office of the Reich Research Council
and tried very early on to bring home research capacity from the front. The fact that
Schreyer was apparently never called up can only be explained by the protection of
Prof. Stäblein or by his duties at the Institute for Vibration Research. In any case,
membership in the NSDAP was useful for an academic career. Many professors and
assistants lost their jobs during the “bringing-into-line period” and its aftermath.
The road was clear for those who aspired to an academic career: “Between 1933
and 1939, about 45% of all university positions were filled, considerably more than
is usually the case in a comparable period. The expulsion of the Jews accounts for
about half of this” (Jarausch 1993). So was it Schreyer’s careerism or his convictions
that explain his party membership? His membership card lists May 1, 1933, as the

34 2 The Race to Build the Computer in World War II

Fig. 2.7 Helmut Schreyer (left) and Konrad Zuse (right) working on the Z1 (Image: Deutsches
Museum)

day he joined the party, i.e., the exact date of the ban on new membership in the
NSDAP. He became member 2.544.065. This means that Helmut Schreyer was one
of the last applicants to be admitted (Fig. 2.7).

Hartmut Petzold was able to identify some of Helmut Schreyer’s wartime
activities from reports of the TH Berlin and the Institut für Schwingungsforschung
(Institute for Vibration Research), which was one of the so-called “Four-Year-
Plan-Institutes,” i.e., institutions that were specifically funded and established in
the course of the “Four-Year-Plan” for the rearmament of Germany, and from
interviews: “In the following years Schreyer worked as an assistant on war-related
work, including an accelerometer for the V2 rocket, detectors for unexploded
bombs, and converters of analog radar measurements into acoustic signals for fighter
planes. He was able to present the relay chain as a new type of frequency divider
that worked perfectly from 1 to 5000 Hz. A larger computer circuit failed for lack
of material.” (Petzold 1985).

Like Zuse, Schreyer had a “day job” and an evening passion (the calculating
machines). The day job was developing electronics for new weapons, the night
job and passion was writing a dissertation entitled “The Tube Relay and its
Circuit Technology,” which he defended in October 1941 (Schreyer 1941). The
accelerometer for the V2 rocket, for example, was designed to replace the use of
radar to measure the speed of the rocket using the Doppler effect. A ground station

2.3 Helmut Schreyer and the Electronic Computer 35

tracked the rocket on radar and sent a radio signal to shut down the engine when it
reached a certain speed. An accelerometer, if accurate enough, could have integrated
the acceleration to provide the rocket’s speed. This would have made the rocket
fully autonomous and possibly more accurate. Apparently the accelerometer was
not used.

Until 1933, Berlin was the European capital of science, but it suddenly became
the capital of German weapons. In a secret memorandum of August 1936 on the
“Four Year Plan,” Hitler set the goal of getting Germany ready for war within
4 years. About 30 “Four Year Plan Institutes,” 20 of them at universities, were
established under the administration of Hermann Göring’s Four-Year-Plan authority
(Hachtmann 2003). The Institute for Vibration Research was one of them. This
clearly outlined its scientific mission, i.e., weapons research. In 1933, Henschel
Flugzeug-Werke was founded in Berlin Adlershof. This was the beginning of
Henschel’s involvement in the construction of aircraft and, a little later, remote-
controlled bombs. This all happened while Zuse and Schreyer were students. Nolens
volens they were caught up in the whirlwind: in 1935, Zuse began working as a
structural engineer at Henschel, while 4 years later, Schreyer became an assistant at
the Four-Year Plan Institute for Vibration Research.

Many new weapons were developed in Berlin as part of the preparations for the
war and after it broke out. The first night vision systems, for example, were built by
AEG in 1935. They were mounted on tanks and later on rifles. Helmut Hoelzer, the
developer of the world’s first electronic analog computer, was employed by AEG in
Berlin from 1939 until he was sent to Peenemünde to work with Wernher von Braun
(Tomayko 1985). A list compiled by German and Austrian researchers in 1947
mentions 1600 people living in Germany and Austria at the time who were relevant
to the intelligence services. Of these, 135 were still living in Berlin (Anonymous
1947).

In a sense, the two students, Konrad Zuse and Helmut Schreyer, lost the ground
beneath their feet. From today’s perspective, it is difficult to understand why Zuse
reveals so little about this period in his memoirs. The renaming of the AV motif
was more than just an anecdote, it was the effect of the conformity enforced by Nazi
ideology. The expulsion of Jewish students and professors is also hardly commented
on. Zuse mentions only that three Jewish students “voluntarily” resigned from
the Motiv Association. According to an official report from 1934, 134 Berlin
university professors were expelled, 22% of all expelled scientists in Germany. The
effects on German science, especially in Berlin, were clearly visible and must have
caused great anxiety at the universities. Zuse and Schreyer must have had political
exchanges with other students, of which there is little in the memoirs.

2.3.2 The Electronic Computer

The rest of the story is well known. Helmut Schreyer designed some circuits
for an electronic calculator, including a memory consisting of glow lamps, for

36 2 The Race to Build the Computer in World War II

which he applied for a patent (granted in 1943). Another application about the
elementary electronic components for the calculating machine had already been
filed in November 1940 (Petzold 1985). Schreyer also designed a special unit
that could convert a decimal number into binary code. F.L. Bauer commented
extensively on the elementary circuits (Bauer 2009). The designs were lost in a
bombing raid toward the end of the war. Prof. Wilhelm Stäblein lost his life in an air
raid on Erlangen/Nuremberg, where the Institute for Vibration Research had been
evacuated. Wilhelm Stäblein’s second assistant, chief engineer Herbert Raabe, lost
his job in the course of the denazification of the universities (Butzer et al. 2009).
Like Schreyer, he was a member of the NSDAP. Schreyer suddenly lost his main
protector and other important contacts in the academic milieu. After the war, he was
never able to regain a foothold in academic life. Finally, in 1949, Schreyer emigrated
to Brazil, where he became a professor of electrical engineering at the Technical
University of the Army and director of the Telecommunications Laboratory of the
Brazilian Post Office. In 1977, he was made an honorary citizen of Rio de Janeiro. In
the town of Delitzsch, formerly Selben, there is now a Dr. Helmut-Schreyer-Straße.

To understand Schreyer’s circuits, it is important to note that although the logic
of a binary machine can be built very easily using vacuum tubes, it would have
been very expensive to use the same technology for all the components of the
machine. In the USA, for example, John Atanasoff used capacitors to store bits
and tubes to process them. The Manchester Mark I machine used a cathode tube
as memory. Bits were burned in as dots and periodically refreshed to keep them
shining. The afterglow of the cathode tube provided enough time for the refresh
process. Schreyer, on the other hand, used a glow lamp for storage. The lamp could
be switched on if a higher than normal voltage was applied at the same time as the
cathode was activated (to store a 1). If the cathode was inactive (to store a 0), the
lamp would not glow. With the regular voltage, the lamp continued to glow if it had
been turned on before and could be read by a connected vacuum tube. All in all,
this was a very simple construction that could have been implemented as a large
memory with the technical means available at the time. In his dissertation of 1941,
Schreyer described special elementary components that could be used for various
tasks. The dissertation was classified as secret. Zuse suspected that Stäblein had the
dissertation classified in order to land new armaments contracts (Petzold 1985).

It has been speculated whether or not Schreyer’s machine could have been the
first German electronic computer. However, Schreyer was by no means alone in
this race. John Atanasoff has already been mentioned. When Atanasoff designed his
(not universal) calculating machine in 1938, which was completed as a prototype
with 300 vacuum tubes in 1939, Schreyer was just beginning to design his circuits.
Construction of the American ENIAC began in 1942 and lasted until 1946. However,
John Mauchly had already visited Atanasoff in 1941 and had been working on
the idea of building an electronic computer ever since. He enrolled in electrical
engineering at the University of Pennsylvania, even though he already had a
doctorate in physics. The builders of ENIAC were all first-rate electronic engineers.

Helmut Schreyer would have been able to compete with the American designs
only if his superiors had understood the importance of such a calculating machine

2.4 Conclusion 37

early enough and if the elegance of Zuse’s design had come into play. In his 1939
letter to the army, Schreyer describes an electronic machine capable of performing
up to 10,000 operations per second (Schreyer 1939). But even Zuse was skeptical
about the possibility of using electronic components. As late as 1952, he wrote: “In
1939, people laughed at us because we wanted to build electronic devices. Today
they laugh at us because we did not build electronic machines. We thought at that
time, the electronic machine is wonderful, but first there must be robust elementary
gates. Until then, we will build electromagnetic devices. Today, if we could sell an
electronic computer with a clear conscience, we would immediately use electronic
components. But as far as we know, we have not reached that moment” (quoted in
Petzold 2004).

2.4 Conclusion

Only very late after the war did Konrad Zuse receive the recognition he deserved.
He gradually became famous, and his pioneering contributions were recognized.
Helmut Schreyer could not achieve the same degree of fame because his own
contributions never went beyond the mere possibility of electronic computing.
Schreyer’s experiments remained unfinished and completely unknown outside a
small circle. As for his political views, Schreyer’s membership in the NSDAP was
mentioned in print by Paul Ceruzzi as early as 1983, but this was hardly noticed in
Germany at the time (Ceruzzi 1983).

Perhaps it was Zuse’s and Schreyer’s bad luck that they were not among the
many scientists transported to the USA in Operation Paperclip (Bower 1987). The
so-called “Osenberg List” with the names of 15,000 German scientists fell into
the hands of the Allies and was the basis for the first recruitment attempts by the
Americans. The files of selected scientists were clipped, hence the name of the
operation. Entire biographies were cleaned overnight, such as that of Wernher von
Braun, a member of the SS and head of the German rocket program, who later rose
to become director of NASA. Or Herbert Wagner, Zuse’s supervisor at Henschel,
who after the war made a career in the USA developing new cruise missiles.
Had Stäblein not died in the war, he might have been brought to the USA. One
can only speculate what Zuse or Schreyer could have achieved scientifically and
commercially with the immense resources available in the USA.

We can only speculate about the reasons for Schreyer’s emigration to Brazil after
the war. We will never know: the generation of scientists of that time surrendered all
too quickly to their rulers and then remained all too stubbornly silent. Until 1941,
many were still able to get drunk on military success. At some point, however, the
magnitude of the catastrophe could no longer be ignored. But neither Zuse nor
Schreyer gave a thorough account of the 12 momentous years between 1933 and
1945, of what they knew, what they didn’t know, or what they didn’t want to know.

38 2 The Race to Build the Computer in World War II

References

Aiken, H.H., and G.M. Hopper. 1982. The Automatic Sequence Controlled Calculator. In The
Origins of Digital Computers, ed. B. Randell, 203–222. Monographs in Computer Science.
Berlin: Springer. https://doi.org/10.1109/EE.1946.6434251

Anonymous. 1947. Objective List of German and Austrian Scientists. Joint Intelligence Objectives
Agency.

Bower, T. 1987. The paperclip conspiracy – The hunt for Nazi scientists. Boston: Little, Brown and
Company.

Bauer, F.L. 2009. Helmut Schreyer – ein Pionier des “elektronischen“ Rechnens. In Historische
Notizen zur Informatik. Berlin: Springer. https://doi.org/10.1007/978-3-540-85790-7

Burks, A.R., and A.W. Burks. 1988. The First Electronic Computer – The Atanasoff Story. Ann
Arbor: The University of Michigan Press.

Butzer, P.L., M.M. Dodson, P.J.S. Ferreira, J.R. Higgins, O. Lange, and P. Seidler. 2009. Herbert
Raabe’s Work in Multiplex Signal Transmission and His Development of Sampling Methods.
Signal Processing 90 (5): 1436–1455. https://doi.org/10.1016/j.sigpro.2009.11.018

Ceruzzi, P.E. 1983. Reckoners: The Prehistory of the Digital Computer, from Relays to the Stored
Program Concept, 1935-1945. Westport, CT: Greenwood Press.

Delius, F.C. 2009. Die Frau, für die ich den Computer erfand. Berlin: Rowohlt Verlag.
Giles, G.J. 1985. Students and national socialism in Germany. Princeton: Princeton University

Press.
Hachtmann, R. 2003. Science Management in the “Third Reich”. History of the General

Administration of the Kaiser Wilhelm Society. Göttingen: Wallstein Verlag.
Hopper, G.M., H.H. Aiken, R.M. Bloch, and R.L. Hawkins. 1946. A Manual of Operation for the

Automatic Sequence Controlled Calculator, Vol 1. Cambridge, MA: Harvard University Press.
Jarausch, K.H. 1993. The Expulsion of Jewish Students and Professors from Berlin University

under the Nazi Regime. Lecture June 15
Lavington, S.H. 1975. A History of Manchester Computers. Manchester: Blackwell Publishers.
Meyer, B. 2000. Berlin – Stadt der Nobelpreisträger. Berlinische Monatsschrift 6. https://

berlingeschichte.de/bms/bmstxt00/0004prol.htm
Petzold, H. 1985. Computing Machines – A Historical Study of their Manufacture and Use from

the Empire to the Federal Republic. Düsseldorf: VDI Verlag.
Petzold, H. 2004. Hardwaretechnologische Alternativen bei Konrad Zuse. In Geschichten der

Informatik: Visionen, Paradigmen, Leitmotive, ed. H.D. Hellige. Berlin: Springer. https://doi.
org/10.1007/978-3-642-18631-8-5

Randell, B., ed. 1982. The Origins of Digital Computers, 3rd edn. Monographs in Computer
Science. Berlin: Springer. https://doi.org/10.1007/978-3-642-61812-3

Rojas, R. 1993. Who Invented the Computer? The Debate from the Viewpoint of Computer
Architecture. In Fifty Years Mathematics of Computation, ed. W. Gautschi, Vol. 48, 361–
366. Proceedings of Symposia in Applied Mathematics. https://doi.org/10.1090/psapm/048/
1314871

Rojas. R. 1994. On Basic Concepts of Early Computers in Relation to Contemporary Computer
Architectures. In IFIP 13th World Computer Congress, 324–331.

Schreyer, H. 1939. Technische Rechenmaschine. Zuse Papers 004/002 www.zib.de/zuse
Schreyer, H. 1941. Das Röhrenrelays und seine Schaltungstechnik. PhD thesis, TH Berlin.
Tomayko, J.E. 1985. Helmut Hoelzer’s Fully Electronic Analog Computer. Annals of the History

of Computing 7 (3): 227–240. https://doi.org/10.1109/MAHC.1985.10025
Zuse, K. 1970. Der Computer – Mein Lebenswerk. Landsberg: Verlag Moderne Industrie,

https://doi.org/10.1109/EE.1946.6434251
https://doi.org/10.1109/EE.1946.6434251
https://doi.org/10.1109/EE.1946.6434251
https://doi.org/10.1109/EE.1946.6434251
https://doi.org/10.1109/EE.1946.6434251
https://doi.org/10.1109/EE.1946.6434251
https://doi.org/10.1109/EE.1946.6434251
https://doi.org/10.1109/EE.1946.6434251
https://doi.org/10.1007/978-3-540-85790-7
https://doi.org/10.1007/978-3-540-85790-7
https://doi.org/10.1007/978-3-540-85790-7
https://doi.org/10.1007/978-3-540-85790-7
https://doi.org/10.1007/978-3-540-85790-7
https://doi.org/10.1007/978-3-540-85790-7
https://doi.org/10.1007/978-3-540-85790-7
https://doi.org/10.1007/978-3-540-85790-7
https://doi.org/10.1007/978-3-540-85790-7
https://doi.org/10.1007/978-3-540-85790-7
https://doi.org/10.1016/j.sigpro.2009.11.018
https://doi.org/10.1016/j.sigpro.2009.11.018
https://doi.org/10.1016/j.sigpro.2009.11.018
https://doi.org/10.1016/j.sigpro.2009.11.018
https://doi.org/10.1016/j.sigpro.2009.11.018
https://doi.org/10.1016/j.sigpro.2009.11.018
https://doi.org/10.1016/j.sigpro.2009.11.018
https://doi.org/10.1016/j.sigpro.2009.11.018
https://doi.org/10.1016/j.sigpro.2009.11.018
https://doi.org/10.1016/j.sigpro.2009.11.018
https://berlingeschichte.de/bms/bmstxt00/0004prol.htm
https://berlingeschichte.de/bms/bmstxt00/0004prol.htm
https://berlingeschichte.de/bms/bmstxt00/0004prol.htm
https://berlingeschichte.de/bms/bmstxt00/0004prol.htm
https://berlingeschichte.de/bms/bmstxt00/0004prol.htm
https://berlingeschichte.de/bms/bmstxt00/0004prol.htm
https://berlingeschichte.de/bms/bmstxt00/0004prol.htm
https://doi.org/10.1007/978-3-642-18631-8-5
https://doi.org/10.1007/978-3-642-18631-8-5
https://doi.org/10.1007/978-3-642-18631-8-5
https://doi.org/10.1007/978-3-642-18631-8-5
https://doi.org/10.1007/978-3-642-18631-8-5
https://doi.org/10.1007/978-3-642-18631-8-5
https://doi.org/10.1007/978-3-642-18631-8-5
https://doi.org/10.1007/978-3-642-18631-8-5
https://doi.org/10.1007/978-3-642-18631-8-5
https://doi.org/10.1007/978-3-642-18631-8-5
https://doi.org/10.1007/978-3-642-18631-8-5
https://doi.org/10.1007/978-3-642-61812-3
https://doi.org/10.1007/978-3-642-61812-3
https://doi.org/10.1007/978-3-642-61812-3
https://doi.org/10.1007/978-3-642-61812-3
https://doi.org/10.1007/978-3-642-61812-3
https://doi.org/10.1007/978-3-642-61812-3
https://doi.org/10.1007/978-3-642-61812-3
https://doi.org/10.1007/978-3-642-61812-3
https://doi.org/10.1007/978-3-642-61812-3
https://doi.org/10.1007/978-3-642-61812-3
https://doi.org/10.1090/psapm/048/1314871
https://doi.org/10.1090/psapm/048/1314871
https://doi.org/10.1090/psapm/048/1314871
https://doi.org/10.1090/psapm/048/1314871
https://doi.org/10.1090/psapm/048/1314871
https://doi.org/10.1090/psapm/048/1314871
https://doi.org/10.1090/psapm/048/1314871
https://doi.org/10.1090/psapm/048/1314871
www.zib.de/zuse
www.zib.de/zuse
www.zib.de/zuse
www.zib.de/zuse
https://doi.org/10.1109/MAHC.1985.10025
https://doi.org/10.1109/MAHC.1985.10025
https://doi.org/10.1109/MAHC.1985.10025
https://doi.org/10.1109/MAHC.1985.10025
https://doi.org/10.1109/MAHC.1985.10025
https://doi.org/10.1109/MAHC.1985.10025
https://doi.org/10.1109/MAHC.1985.10025
https://doi.org/10.1109/MAHC.1985.10025

Chapter 3
The Z1: Architecture and Algorithms
of Zuse’s First Computer

This chapter provides a comprehensive description of the Z1, the programmable
mechanical computing machine built by Konrad Zuse in Berlin between 1936
and 1938. We explain the main structural elements of the machine, the high-level
architecture, and the internal data flow. The Z1 was capable of performing the four
basic arithmetic operations using floating-point numbers. Instructions were read
from a punched tape. A program consisted of a sequence of arithmetic operations,
interspersed with memory store and load instructions, occasionally interrupted by
input and output operations. Numbers were stored in a mechanical memory. The
elementary mechanical components were Zuse’s “mechanical relays.” Notably, the
Z1 did not include conditional branching in its instruction set.1 .

While the architecture of the Z1 is similar to the relay computer Zuse finished in
1941 (the Z3), there are some significant differences. The Z1 implements operations
as sequences of microinstructions as in the Z3, but does not use rotary switches as
microsteppers. The Z1 uses a digital incrementer and a set of conditions that are
mechanically transformed into a sequence of microinstructions for the exponent
and mantissa units, as well as for the memory blocks. Microinstructions select
the appropriate block and layers in the machine, using a vertical stack of control
plates. The exception circuits (in case the mantissa is zero), which are necessary
for normalized floating-point, were not implemented. Zuse knew that they were
necessary, but they were first integrated into the Z3. In other words, the Z1, being a
prototype, could not compute with zero.

The information for this chapter was gathered from careful study of the blueprints
that Zuse drew for the reconstruction of the Z1 for the German Museum of
Technology in Berlin, from some letters, and sketches in notebooks. Although the
machine has been on display since 1989 (non-operational since the mid-1990s), no
detailed high-level description of the machine’s architecture has been available in
print until now.

1 This chapter is based on two preprints: (Rojas 2014), (Rojas 2016)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Rojas, Konrad Zuse’s Early Computers, History of Computing,
https://doi.org/10.1007/978-3-031-39876-6_3

39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39876-6protect T1	extunderscore 3&domain=pdf
https://doi.org/10.1007/978-3-031-39876-6_3
https://doi.org/10.1007/978-3-031-39876-6_3
https://doi.org/10.1007/978-3-031-39876-6_3
https://doi.org/10.1007/978-3-031-39876-6_3
https://doi.org/10.1007/978-3-031-39876-6_3
https://doi.org/10.1007/978-3-031-39876-6_3
https://doi.org/10.1007/978-3-031-39876-6_3
https://doi.org/10.1007/978-3-031-39876-6_3
https://doi.org/10.1007/978-3-031-39876-6_3
https://doi.org/10.1007/978-3-031-39876-6_3
https://doi.org/10.1007/978-3-031-39876-6_3

40 3 The Z1: Architecture and Algorithms of Zuse’s First Computer

3.1 Konrad Zuse and the Z1

Konrad Zuse (1910–1995) built his first computing machine between 1936 and
1938 (he experimented with small mechanical devices in 1934 and 1935). Zuse
studied civil engineering at the Technische Hochschule Berlin (now the Technical
University of Berlin). His first employer was the company Henschel Flugzeug-
Werke, which had started building military aircraft in Berlin in 1933 (Materna
2010). The task of the 25-year-old was to carry out the long chains of structural
calculations required for the manufacturing process of aircraft components. As a
student, Zuse had already started thinking about ways to mechanize computation
(Zuse 1970). So after only a few months working for Henschel, he decided to quit,
build a mechanical computer, and start his own business, in fact, the first computer
company in the world. At that time, he wrote a short document describing his vision
of the “computer for the engineer,” its structure, and how it could be programmed
(Zuse 1936b).

During the period 1936–1945, Konrad Zuse was unstoppable, even after two
brief calls to the front. He managed to be called back to Berlin to work part-
time for Henschel and part-time for his own company. In those 9 years, he built
four computers, as well as the two special-purpose machines. Zuse’s original
abbreviations for the names of the machines were V1, V2, V3, and V4 (meaning
Versuchsmodell, or prototype). After the war, he changed the V to Z for obvious
reasons. The V1 (hereafter Z1) was a fascinating technical feat: it was a completely
mechanical computer, but instead of using gears and wheels to represent the 10
decimal digits (as Babbage had done in the previous century, and IBM had done
with its Hollerith machines), Zuse decided to build a completely binary computer.
He even wrote a document explaining the “dyadik,” or binary system (Zuse 1937).
His machine was based on components in which the forward linear movement of a
small rod or metal plate represented a 1, and no movement represented a 0 (or vice
versa, depending on the component). Zuse developed novel types of mechanical
logic gates and finished the first prototype of the machine in his parents’ living room.
The sequence of events that led to the Z1 and subsequent machines was described
by Zuse himself in his autobiography (Zuse 1970).

The Z1 was a mechanical but also surprisingly modern computing machine:
it was based on the binary system, it used a floating-point representation for all
numbers and could perform the four basic arithmetic operations. The program was
read from a punched tape, and the results could be stored in or read from memory
(16 words). The machine cycle was about 4 Hz.

The Z1 was very similar to the Z3, finished in 1941, whose architecture I
first described in (Rojas 1997) (see Chap. 5). However, the detailed high-level
architecture of the Z1 has never been published before. The original prototype
was destroyed in a bombing raid in 1943. Only a few sketches and photographs of
the mechanical components survived. In the 1980s, Konrad Zuse, who had retired
many years earlier, received funding from Siemens and other German sponsors
to build a full-scale replica of the Z1, which is now housed in Berlin’s German

3.1 Konrad Zuse and the Z1 41

Fig. 3.1 A view of the reconstructed Z1 in Berlin (from the Konrad Zuse Internet Archive: http://
zuse.zib.de). The user can rotate the view around the machine and zoom in and out. The virtual
display is based on thousands of linked photographs

Museum of Technology (Fig. 3.1). Zuse built the machine with the help of two
engineering students: a complete set of blueprints was prepared, with drawings of
every single mechanical component (to be cut from sheets of steel). Zuse supervised
the reconstruction process over the course of several years at his own home in
Hünfeld, Germany. The first sketches of the Z1 reconstruction were made in 1984.
In April 1986, Zuse drew a timetable expecting to have the machine finished by
December 1987. When the machine was delivered to the museum in 1989, it
was shown running on several occasions. However, the reconstructed Z1, like the
original, was never reliable enough to run unattended for long periods of time. When
the machine jammed, Zuse had to personally travel to Berlin to have repairs done.
Unfortunately, only a few modules of the machine have been shown in operation
since his death in 1995.

Although we have a reconstruction of the Z1 in Berlin, fate struck twice. Other
than drawing these blueprints, Zuse made no serious effort to write a complete
top-down description of the reconstructed Z1. This would have been necessary,
because it is evident from comparing the reconstructed Z1 with old photographs
of the Z1 of 1938 that the new machine was “streamlined.” The higher precision
of the machining equipment available to Zuse in the 1980s allowed him to build
the reconstruction using layers of steel plates that could be placed closer together

http://zuse.zib.de
http://zuse.zib.de
http://zuse.zib.de
http://zuse.zib.de

42 3 The Z1: Architecture and Algorithms of Zuse’s First Computer

Fig. 3.2 The mechanical layers of the Z1. The eight memory layers can be seen on the right; the
12 processor layers on the left. The lower section with levers is used for transmitting the clock
cycles to all parts of the machine (http://zuse.zib.de)

(Fig. 3.2). The new Z1 has a significantly smaller volume than the old one. It is
also not entirely clear whether the new Z1 is strictly a one-to-one mechanical clone
of the logic of the original machine or whether Zuse’s experience with the Z3 and
later machines allowed him to improve parts of the reconstructed Z1. In the set of
mechanical blueprints drawn between 1984 and 1989, there are at least six different
designs for the addition unit, with between five and eight, and eventually up to 12
mechanical layers. Zuse left no detailed written record that would allow us to answer
such questions. Worse, he rebuilt the Z1 and left no comprehensive description
of it—for the second time! He acted like those celebrated watchmakers who only
draw the components of their watches: first-rate watchmakers would need no further
clarification. His two student assistants documented only the memory and the tape
reader, a heaven-sent piece of information (Schweier and Saupe 1988). Visitors to
the museum in Berlin can only marvel at the thousands of components visible in
the machine. They can both marvel and despair, for it is almost impossible, even for
professional computer scientists, to visualize the inner workings of this mechanical
Leviathan. The machine is there—but in suspended animation.

This chapter is based on a careful study of the blueprints of the Z1, scattered
annotations in Zuse’s notebooks, and numerous on-site inspections of the machine.
The reconstructed Z1 has been non-operational for so many years because the steel
plates Zuse used bend under pressure. For this chapter, more than 1100 large-format
drawings of the machine’s components were reviewed, as well as 15,000 pages
of notebooks (only a small fraction of which contained information about the Z1
though). I could only watch a short video of parts of the machine in operation
(filmed more than 20 years ago). Deutsches Museum in Munich houses 1079
blueprints from Zuse’s private papers, while the German Museum of Technology
has another 314 in its archives. Fortunately, some of the blueprints also specify the
definition and timing of some microinstructions for the Z1 and also some examples
of bit-by-bit handwritten calculations done by Zuse. Such examples were probably
used by the inventor to check the internal operation of the machine and to find
bugs. This information was like a Rosetta stone, allowing us to correlate the Z1
microinstructions with the diagrams and blueprints and with our relatively deep

http://zuse.zib.de
http://zuse.zib.de
http://zuse.zib.de
http://zuse.zib.de

3.2 Block Architecture 43

knowledge of the relay-computer Z3 (for which we have complete circuits Rojas
1998). The Z3 is based on the same high-level architecture as the Z1 but differs in a
number of important ways.

This chapter proceeds top-down: first, we review the block architecture of the Z1,
the layout of the mechanical components, and we also provide some examples of the
mechanical gates used by Zuse. Then we look in more detail at the core elements of
the Z1: the clocked addition units for exponent and mantissa, the memory, and the
microsequencer for arithmetic operations. We show the interplay of the mechanical
elements and how the “sandwich” layout of steel plates helped Zuse organize the
computation. The appendix describes the arithmetic and I/O operations of the Z1
using tables.

3.2 Block Architecture

The Z1 was a clocked machine. Being a mechanical device, its mechanical clock
signal was divided into four subcycles that consisted of the movement of mechanical
components in four orthogonal directions, as shown in Fig. 3.3 (left side, see

Fig. 3.3 Block diagram of the Z1 (1936–1938) in accordance with the reconstruction of 1989. The
original Z1 had only 16 words of memory instead of 64. The punched tape was made of 35mm
film tape. Each instruction was encoded using 8 bits

44 3 The Z1: Architecture and Algorithms of Zuse’s First Computer

“cycling unit”). Each movement direction was called an “engagement” by Zuse.
He aimed for a 4 Hz clock cycle, but the Berlin reconstruction never operated faster
than at 1 Hz (with four subcycles per second). At this speed, one multiplication takes
around 20 seconds.

The Z1 has a number of features that were later adopted in the Z3. From a
modern perspective, the most important innovations in the Z1 (see Fig. 3.3) were
the following:

(a) It was based on a fully binary architecture for the memory and the processor.
(b) The memory was separated from the CPU. In the Berlin reconstruction, the

memory and punched tape reader make up about half of the machine. The
processor, I/O panels, and the microcontrol unit make up the other half. The
original Z1 had 16 words of memory; the reconstruction has 64.

(c) The machine was programmable: instructions were encoded on a punched tape
using eight bits (two bits for the opcode and six bits for memory addressing;
for operations, three bits were used to encode the opcode of the four arithmetic
and two I/O operations). Thus, there were only eight instructions: the four basic
arithmetic operations, also “load-from” and “store-to” memory, one instruction
to read data from a decimal panel, and another to display the contents of the
result register on a mechanical decimal display.

(d) Floating point was used for internal data representation, in both memory and
processor. Therefore, the processor was divided into two parts: one for handling
the exponents and one for handling the mantissas. In memory, the mantissa
had 16 bits for the bits after the binary point. The bit to the left of the point
was always one (normalized floating point) and did not need to be stored in
memory. Exponents were represented with 7 bits in two’s complement format
(thus running from .−64 to .+63). The sign of the floating-point number was
stored in an additional bit. Therefore, the word length in memory was 24 bits
(16 bits for the mantissa, 7 for the exponent, and 1 bit for the sign).

(e) The special case of zero in arguments or results (which cannot be expressed
with a normalized mantissa, where the leading bit is always 1) can be handled
within the floating-point representation as special values of the exponent. This
was done in the Z3, but not in the Z1 nor in its reconstruction. Therefore, the
original Z1 could not work correctly with zero as an argument or intermediate
result. Zuse was aware of this enormous shortcoming, but he left the solution to
the relay machine, which was easier to wire.

(f) The CPU was microcoded: operations were broken into sequences of microin-
structions, one for each machine cycle. The microinstructions produced a
specific flow of data within the Arithmetic Logic Units (ALUs), which ran
nonstop, adding in every cycle whatever two numbers were stored in its two
input registers.

(g) Curiously, memory and processor ran independently: the memory would put
data on, or retrieve data from, the communications interface, whenever the
punched tape gave the command. The processor would fetch, or put data on
the interface, when a load or store operation was executed. It was possible to

3.2 Block Architecture 45

run only the processor and shut down the memory, in which case the data on
the interface, supposedly coming from the memory, would be zero. It was also
possible to run only the memory and shut down the processor. This allowed
Zuse to debug each half of the machine independently. When running together,
a shaft connecting the cycling units in each half synchronized both parts of the
machine.

Further innovations in the Z1 were similar to some of the ideas later present in the
Z3. The instruction set was virtually the same, but the Z1 could not extract square
roots. The Z1 used discarded 35mm film tapes as punched tape. In 1936, Zuse had
briefly considered storing the main program and the subprograms in memory along
with the data, but since the Z1 had a very small memory unit, a punched tape was a
practical alternative (Zuse 1936a).

Figure 3.3 shows the abstract diagram of the reconstructed Z1. Note the two main
halves of the machine: the memory is in the upper half, and the processor is in the
lower half. Each half had its own rotating cycling unit, which further divided each
cycle into four mechanical movements in the directions indicated by the arrows.
These four movements could be communicated to any part of the machine by
means of levers distributed under the computing components. The punched tape
was read one instruction at a time. The instructions had different durations. Load
and store operations took one cycle; all other operations needed several cycles. The
memory address was contained in the lower six bits of the 8-bit opcode, allowing
the programmer to refer explicitly to 64 memory addresses.

Memory and processor communicated through a buffer between the two units
(the components 12abc in Fig. 3.5). In the CPU, the internal representation of the
mantissa was extended to 20 bits: two additional bits were used before the binary
point (for the binary powers . 21 and . 20), and two additional bits for the lowest order
binary powers (.2−17 and .2−18), to increase the accuracy of the CPU for intermediate
results. Therefore, in the processor, the mantissa had 20 bits representing the binary
powers from .2+1 to .2−18.

The decoder would take an instruction from the punched tape reader, decode the
operation, and start controlling the memory unit and processor, as needed. A number
could be read from memory into the first of two CPU floating-point registers (using
a load operation). Another load operation would read a number from memory into
the second CPU register. The two registers could be added, subtracted, multiplied,
or divided in the processor. Such operations require the addition or subtraction of
the exponents (with a two’s complement ALU) while another ALU is needed for
the mantissas. The sign of the result of a multiplication or division is handled in a
special “sign unit.”

An input instruction made the machine enter into idle mode. This allowed the
operator to enter data by pulling four decimal digits from a mechanical panel, and
by entering the exponent of the floating-point representation with a small lever, and
also the sign of the number. The operator could then restart normal operation. An
output instruction also made the machine idle and displayed the contents of the
result register on a decimal mechanical panel until the operator pressed a lever to
restart normal operation.

46 3 The Z1: Architecture and Algorithms of Zuse’s First Computer

The microsequencer in Fig. 3.3, along with the exponent and mantissa addition
units, constitutes the core of the computation capabilities of the Z1. Each arithmetic
or I/O operation was divided into “phases.” The microsequencer started counting
them and selected the appropriate microoperation in the corresponding layer, out of
12 possible layers of mechanical components in the addition units.

Therefore, a minimal program in a punched tape could be, for example: (1) load
number from address 1 (implicitly into the first CPU register), (2) load a number
from address 2 (implicitly into the second CPU register), (3) add, (4) display the
result in decimal. This program allowed the operator to use the Z1 as a simple
mechanical calculator. Of course, the sequence of computations could be much
longer: they were programmed using the memory as storage for constants and
intermediate results (in the latter Z4 computer, one tape once used for mathematical
computations was 2 meters long).

The architecture of the Z1 can be summarized using modern terminology as
follows: it was a programmable normalized floating-point Harvard architecture
machine (processor and memory were separate), with an external read-only pro-
gram, and a memory of sixteen 24-bit words. It was capable of accepting as
input decimal numbers of four digits (and an exponent as well as a sign), for
conversion to binary. It could perform the four arithmetic operations on the data.
The binary floating-point result could be transformed back into decimal scientific
notation readable by the user. There was no conditional or unconditional branching
in the instruction set. There was no exception handling for zero results. Each
instruction was decomposed into microinstructions “hardwired” in the machine. A
microsequencer orchestrated the execution of the microinstructions. In an old video
of the mechanism in action, it looks to the naked eye like the moving parts of an
automatic loom. But this machine was weaving numbers.

3.3 Layout of the Mechanical Components

The Berlin reconstruction of the Z1 is based on a very clean layout. All mechanical
components are optimally arranged. We have mentioned that Zuse designed at least
six different versions of the processor. The relative positions of the main blocks were
fixed from the beginning and may reflect the original distribution of the mechanical
elements in the original Z1. There are two main divisions: a gap separates the
memory from the processor. In fact, both parts of the machine can be pulled apart for
debugging purposes, as they are mounted on separate tables with rollers. Another
horizontal plane divides the machine into an upper part containing the computational
components (those visible in photographs of the Z1) and a lower part containing
all the synchronization levers. This “underworld” is only visible when the visitor
bends down to look under the computational skyline. Figure 3.4 is a drawing from
the blueprints showing the computation and synchronization layers for part of the
processor. Note the 12 layers of computational components and the lower section
with three levels for levers. This blueprint is a good example of how difficult it can

3.3 Layout of the Mechanical Components 47

Fig. 3.4 Schematics of the computation and synchronization layers of the exponent’s unit of the
Z1 (http://zuse.zib.de)

Fig. 3.5 Diagram of the Z1, showing the mechanical building blocks

be to interpret the drawings. While there are many details about the size of the parts,
there are few notes about their use.

Figure 3.5 shows the distribution of logic components in the reconstructed Z1,
seen from above and as drawn by Zuse, further annotated with the logic functionality
of each block (this sketch has been available since the 1990s). At the top we see the

http://zuse.zib.de
http://zuse.zib.de
http://zuse.zib.de
http://zuse.zib.de

48 3 The Z1: Architecture and Algorithms of Zuse’s First Computer

three memory banks. Each can hold eight 8-bit words per layer. Each bank has eight
mechanical layers, so that a total of 64 words can be stored. The first memory bank
(10a) is used for the exponent and sign. The last two banks (10b, 10c) are used for
the lower 16 bits of the mantissa of the stored numbers. This bit distribution allowed
Zuse to build three identical 8-bit memory banks and use them for exponent and
mantissa, thus simplifying the mechanical design. Between memory and processor,
there is a “buffer” to pass numbers to the processor (blocks 12abc) or to receive
numbers from it. There is no way to encode constants in the punched tape. All
numbers must to be entered by the user using the decimal input panel (block 18,
right side) or must be generated by the computer itself as intermediate results.

Each unit in this diagram shows only the top vertical layer. Remember that the Z1
is built like a “sandwich” of mechanical parts. Each computational layer is separated
from the layer above and below it (each layer has a metal floor and a metal ceiling).
The communication between the layers is provided by vertical rods that can transmit
motion from one layer to the neighboring layers. The vertical rods are the small
circles drawn outside the rectangles representing layers of computation. The slightly
larger circles drawn inside the rectangles represent logic operations. Inside each
circle, we can find a binary gate (and going down through the layers up to 12 gates
for each circle). This drawing allows us to estimate the number of logic gates present
in the Z1. Not all units have the same height, and not all layers are populated with
mechanical components. A conservative estimate of the number of binary elements
would be 6000 gates.

Zuse assigned the numbers shown in Fig. 3.5 to the different modules of the
machine. The purpose of the modules is as follows:

Memory Block

• 11a: Decoder for the 6-bit memory addresses
• 11b: Punched tape reader and opcode decoder
• 10a: Memory bank for 7-bit exponents and sign
• 10b, 10c: Memory banks for the fractional part of the mantissa
• 12abc: Interface for load and store operations to and from the processor

Processor Block

• 16: Control and sign unit
• 13: Multiplexer for the two ALU registers in the exponent part
• 14ab: Multiplexer for ALU registers, one-bit two-way shifters for multiplication

and division
• 15a: ALU for the exponent
• 15bc: 20-bit ALU for the normalized mantissa (18 bits for the fractional part)
• 17: Microcode control
• 18: Decimal input panel on the right, output panel on the left

One can imagine computation flowing in this diagram from top to bottom: the
data come from memory to fill the two registers, called F and G, available to the
programmer. These two registers are distributed along blocks 13 and 14ab. The two
registers are fed to the ALUs (blocks 15abc). The result is cycled back to register F

3.4 The Mechanical Gates 49

or G (as result register), or back to memory. The result can be shown in the decimal
display using the “re-translate” instruction (binary to decimal conversion).

In the following, we look at each module in more detail, concentrating on the
main computational components.

3.4 The Mechanical Gates

The mechanical structure of the Z1 can be best understood by looking at a few
simple examples of the type of binary logic gates that Zuse used in his machines.
The classical representation of decimal digits has always used gears. A gear is
divided into 10 sectors—by turning the gear, it is then possible to count from 0
to 9. Zuse decided as early as 1934 to use the binary system (which he called the
dyadic system, following Leibniz).

The basic logic component used by Konrad Zuse in the Z1 was the binary
“mechanical relay” (Zuse 1952b). The logic components could only move one step
in one direction (Zuse arranged the components on a plane so that the permitted
directions of movement were West, South, East, and North). The initial state of
each component is state 0. Its state after a linear displacement is state 1. The
components could move back and forth between the states 0 and 1. Logic gates pass
movement from one plate to another, according to the value of the bits represented.
The structures are three-dimensional: they consist of arrays of superimposed planar
plates that transmit movement usually through cylindrical pins positioned vertically
at right angles to the plates.

Figure 3.6 shows a diagram of a mechanical relay. Bit A is called the “control bit”
or “control element.” On the left side of Fig. 3.6, we see the case where the initial
state of bit A is such that there is no mechanical coupling between the actuator
and the actuated plate: the motion of plate B is not copied to bit C when A is
zero. However, if A moves down to its position 1, then mechanical coupling is
achieved, and the movement of plate B is copied to bit C. This mechanical relay
then represents only a one-step delay.

The right side of Fig. 3.6 shows the case where the initial state of A (that is A=0)
is such that the mechanical coupling between plates B and C is present. When A
moves to state 1 (up), the moving plate B loses its mechanical coupling to plate C.
In this case, bit C will be the negation of bit A: when bit A is 0, C is 1 at the clock
signal. When bit A is 1, bit C is 0.

Figure 3.7 shows how to implement the AND and OR logic gates using two
mechanical relays. In the case of the AND circuit, the mechanical movement of
the actuator plate (activated when a clock signal arrives) is only transmitted when
A=B=1. In the case of the OR circuit, the movement is transmitted when A or B is
equal to 1.

An interesting aspect of such mechanical constructions is that a long logic
formula can be computed with zero delay, in principle, by such mechanical arrange-
ments (assuming that motion between rigid plates is transmitted instantaneously).

50 3 The Z1: Architecture and Algorithms of Zuse’s First Computer

A = 0

B C

actuator plate actuated plate

B C

actuator plate actuated plate

A = 1

Initial state

New state

B C

actuator plate actuated plate

A = 0

A = 1

B C

actuator plate actuated plate

Initial state

New state

Fig. 3.6 A mechanical relay with two different initial states of the control plate. On the left,
the initial state does not provide mechanical coupling. On the right, the initial state provides
mechanical coupling. The initial state is called 0; the state after a displacement is called 1

Fig. 3.7 Two mechanical logic gates: AND on top, OR at the bottom

3.4 The Mechanical Gates 51

Fig. 3.8 An XOR gate made
of mechanical relays

A conjunction of 100 bits, for example, could be computed by concatenating 100
mechanical relays (which couple to their neighbors in state 1). Once all 100 control
bits have been set, the actuator plate will move the actuated plate only if all bits are
equal to 1.

It is easy to see that any kind of logic gate can be constructed using a mechanical
relay. An XOR, for example, can be obtained as a variation of the AND gate with
different initial conditions for the bits A and B, as shown in Fig. 3.8. Bit A moves
down when it is equal to 1; Bit B moves up.

Now, Zuse did not use exactly this kind of mechanical arrangement, because
the main problem is to make sure that all parts will move but also come back to
their initial position. Control plates (such as bit A in Fig. 3.6) move in one direction
and then in an orthogonal direction when the movement of the actuator plate is
transmitted. It is not easy to do this with mechanical components. Therefore, Zuse’s
idea was to use small vertical rods as “connectors” and to let them move between
two horizontal planes made of metal or glass.

Figure 3.9 shows what Zuse called the “elementary gate.” The “actuator plate”
can be regarded as the motion coming from the machine cycle. This plate moves
cyclically from right to left and back again. The top plate is the data bit we use
for control. It can be in position 1 or 0. The rod that goes through the openings
displaces horizontally following the plate (keeping its verticality). If the upper plate
is in the 0-position, the movement of the actuator plate cannot be transmitted to the
actuated plate (see Fig. 3.9, left side). If the data bit plate moves to the 1-position,
the movement of the actuator plate is transmitted to the actuated plate. This is what
Konrad Zuse called a “mechanical relay,” just a switch that closes a mechanical
“current.” This elementary gate can thus copy a bit from the upper to the actuated
plate, rotating the movement of the bit by . 90◦.

The verticality of the connecting rods of the elementary gates was maintained by
making them thick and short and constraining them to slide between two sheets of
glass or metal. The glass minimized the friction with the rods, which could move in
two orthogonal directions. This is what produces the obscure mechanical drawings
that Zuse made during the different stages of the construction of the Z1. The main
idea, as we have seen, is simple, but its mechanical realization is somewhat involved.
Having said that, it must be pointed out that the vertical rods used by Konrad Zuse
in most of his mechanical relays (Figs. 3.9 and 3.10) were an accident waiting to

52 3 The Z1: Architecture and Algorithms of Zuse’s First Computer

Fig. 3.9 An elementary gate is a switch. If the data bit is 1, the actuator (or actor) and actuated
plates are connected. If the data bit is zero, they are disconnected and the movement of the actuator
plate is not transmitted to the actuated plate

Fig. 3.10 A mechanical relay and its control rod/pin sandwiched between plates

happen. The rods moved vertically, sandwiched between glass or metal plates, and
had to be pulled or pushed symmetrically and gently to keep them from falling over.
This was achieved by duplicating the actuated and actuator plates. The result was
never completely satisfactory, except for the mechanical memories built by Zuse,
which were still being used for the Z4 in the 1950s.

Figure 3.11 shows such plate arrangements as seen from above. The actuator
plate is shown as a rectangle with its opening. The control plate (the data bit) in
green pulls the filled circle (a rod) up or down. The actuated plate (red) can move
to the right or left, but only when the rod is in such a position that the actuator’s
opening moves the rod. For each mechanical gate, seen from above, there is a
drawing of the equivalent switch to the right. The control bit can close or open the
gate. The actuator plate can be pulled or pushed (as shown by the arrows). Zuse’s
convention was to always draw the switch in the zero position of the control bit, as
done in Fig. 3.11. Zuse preferred plates to be pushed by the actuator plate (right side
of Fig. 3.11) rather than pulled (left side of Fig. 3.11). It is now very easy to build a
negation gate by using a closed switch that is opened by setting the control bit to 1
(as shown in the bottom two diagrams in Fig. 3.11).

3.4 The Mechanical Gates 53

Fig. 3.11 Some variations of the elementary gate and Zuse’s abstract notation for mechanical
relays. The relays are drawn as switches. By convention, the drawing always shows the position
zero of the control bit. The arrows show the possible movements. The actuator plate can be pulled
to the left (left side diagrams) or pushed to the right (right side diagrams). The initial position of
the mechanical relay can be in the closed position (lower two diagrams). In that case, the relay acts
as a negation since the output is the negation of the control bit

There are many possible mechanical realizations for the main idea, and Zuse
showed great creativity always drawing the variation of a gate that best corresponded
to the 3D structure of the machine (Zuse 1952c).

With a mechanical relay, it is now straightforward to build the rest of the logic
operations. We show examples of the three basic gates: conjunction, disjunction, and
negation. Zuse developed a symbolic notation for his relays that abstracts from the
mechanical nature of the devices and emphasizes the logic properties. Figure 3.12
shows the necessary circuits, now using only the abstract notation. The equivalent
mechanical realizations are easy to imagine. As always, the initial position shown
in the diagram corresponds to state zero. Motion corresponds to state 1. A relay can
be opened or closed by changing from state 0 to state 1.

Zuse designed mechanical gates where the movement could be obtained by
pushing with the actuator plate (as in my examples in this section), but it is also
possible to design variations where the actuator plate can pull the actuated plate. In
Fig. 3.12, this possibility is indicated by the direction of the arrows.

Now everyone can start building his/her own Zuse mechanical computer. The
basic element is the mechanical relay. More complex connections (like the relays
with two actuated plates) can be designed, and the corresponding mechanics must
be built with plates and rods (Zuse 1952b).

The main problem in building a complete computer is to connect all the
components. Note that the control bit always moves orthogonal to the result bit.
Each completed logic operation rotates the mechanical movement by . 90◦. The next
logic operation rotates the movement by .90◦ and so on. After four gates, we are

54 3 The Z1: Architecture and Algorithms of Zuse’s First Computer

Fig. 3.12 Some logic gates built from mechanical relays in abstract notation. The lowest diagram,
an XOR, can be built by using mechanical relays with two possibly actuated plates, as shown in
the diagrams. The mechanical equivalents are easy to design

back to the original direction of motion. This is why Zuse’s cycling units used the
four directions N-E-S-W. Within one machine cycle, it is possible to execute four
layers of logic computations. The logic gates can be simple, such as a negation, or
complex, such as an operation with two actuated plates (in an XOR). The timing
in the Z1 is such that the machine completes an addition in four engagements: in
engagement IV, the arguments are loaded. Engagements I and II compute partial
sums and carries, and engagement III provides the final result.

Result bits can be transferred to different horizontal levels than the level at which
the input bits move. That is, rods can also be used to move bits “up” or “down”
between the layers of the machine. We will see this later for the addition circuits.

At this point, Fig. 3.5 should make more sense: the circles inside the different
units are exactly the circles of Zuse’s abstract notation and pinpoint the position of
the logic gates. We can now abstract from the mechanics and discuss the Z1 from
an architectural point of view.

3.4 The Mechanical Gates 55

3.4.1 The Mechanical Clock Cycle

A complex computer requires the presence of feedback loops in its circuits. The
result of a previous step must be fed back to the processor for further computation.
To reduce the degrees of freedom in the design process, Zuse settled on the four
directions of movement mentioned before (E, S, W, N) and introduced the “common
cycle,” a clock cycle subdivided into four subcycles. During subcycle I, for example,
a pulse in the East direction is transmitted from the clock unit to the machine. During
subcycles II, III, and IV, the movements transmitted go in the South, West, and North
directions, respectively. In a mechanical relay, the control plate can then be activated
in subcycle I, and the actuator plate transmits its motion in subcycle II. In subcycle
III, the control plate returns to its original position, and in subcycle IV, the actuator
and actuated plates can also return to their original positions (Fig. 3.13).

The clock cycle in the Z1 is provided by a crank that can be turned manually or
by an electric motor (Fig. 3.14). This means that the effective cycle time of the Z1

I

II

III

IV

Fig. 3.13 Zuse’s “Einheitskreislauf” (common cycle)

Fig. 3.14 The crank for producing the common cycle. Note the levers used for transmitting the
four directions of movement, as well as energy, all across the machine (http://zuse.zib.de)

http://zuse.zib.de
http://zuse.zib.de
http://zuse.zib.de
http://zuse.zib.de

56 3 The Z1: Architecture and Algorithms of Zuse’s First Computer

was “user-dependent”. It could be any value below the maximum permitted speed
so that the components would not be subjected to excessive mechanical stress.

In a complex circuit, the actuated plate could act as the control plate for another
circuit. If the control plate for the first circuit was set in subcycle I, the first circuit
could be actuated in subcycle II, and the result could be used as the control bit for a
subcircuit activated in subcycle III and so on. With this arrangement, the maximum
depth of a circuit that started and finished its computation within one clock cycle
was depth three. Fortunately, the maximum depth of a circuit for computing the
addition of binary numbers is precisely three.

3.4.2 Transmission of Impulses

Zuse built the reconstructed Z1 in such a way that all the clock subcycles are
transmitted by rods and levers located in the “basement” of the machine. The logic
is located in the upper part of the Z1, distributed over several layers, like a sandwich
of logic elements (Fig. 3.15).

Whenever the state bits are represented by movement in four possible directions,
it is necessary to provide a means to change the direction of movement. This can be
done using levers, as shown in Fig. 3.16

Fig. 3.15 The diagram of the common cycle mechanism (Schweier and Saupe 1988). The four
subcycles are sent in one parallel direction but can be turned .90◦ using levers

3.4 The Mechanical Gates 57

Fig. 3.16 Mechanical
movement: direction changers

It is also possible to have something like an electrical “rectifier” that only allows
logic movement to flow in one direction. This is done by using mechanical gates
where the actuator plates only push the actuated plate or plates, without using a rod
going through multiple plates. This would be more in the spirit of the OR gate shown
in Fig. 3.7, where either of the control plates A or B, or both, can push the actuated
plate. Zuse had a special notation (using an arrow) for such independently “pushed”
plates. He called this “rectification,” like in electrical circuits when electricity can
only flow in one direction.

An important problem Zuse had to deal with is the case where a circuit uses its
result as new data. This is the case of the arithmetic unit (ALU), where a partial
result has to be fed back to the ALU for further processing, for example, during a
multiplication performed by repeated addition. But here we have a contradiction:
when a circuit finishes its calculation, it must be brought back to its initial state
(by the movements allowed by the common cycle). Partial results must be captured
anddelayed until they are needed again in the ALU. To handle this, Zuse designed a
“delay line,” which is nothing more than a sequence of mechanical relays, positioned
one after the other. The result of one relay is used as the control bit for the next relay
and so on. The actuator plates are activated by successive subcycles. Any number
of subcycles can therefore be inserted between the production of a result and its
subsequent use, without having to use a memory cell to hold this value.

3.4.3 An Example: The Mechanical Addition Unit

Figure 3.17 shows the basic building block for a mechanical adder that works in one
cycle (as proposed by Zuse in Zuse 1952a).

The figure shows the addition of the i-th column in the bits .akak−1. . . . a0 to be
added to the sequence of bits .bkbk−1. . . . b0. The bit . ai is set in the subcycle before
subcycle I. In this example, subcycle I moves in the North direction. The following
subcycles rotate in their direction of movement by . 90◦. The bit . bi is pulled up (if it is
1) at the same time that subcycle I becomes active. At the end of subcycle I, the first
two gates from the top have computed the conjunction and disjunction, respectively,
of the two bits. The carry bit of the previous column of bits (. cin) is pulled to the
right at subcycle II. A carry bit for the next column of bits (.cout) is generated if the
two input bits were (1,1), or if they were one of the pairs (0,1) or (1,0), and there is
an active carry from the previous column(. cin).

58 3 The Z1: Architecture and Algorithms of Zuse’s First Computer

Fig. 3.17 Circuit for the addition of two bits . ai and . bi with a carry . cin, and generation of the next
carry bit . cout

The circuit of two gates activated by subcycle III computes the addition bit. If
the input was (1,1) or (0,0), the carry bit from the previous column has to be one, to
have .di = 1. If the input was (0,1) or (1,0), the carry bit from the previous column
has to be zero to have .di = 1. I all other cases . di is equal to zero.

3.4.4 Preliminary Summary of the Mechanical Principles

Before we take a closer look at the Z1, let us summarize what we have learned in
the previous sections:

• The state zero of a bit corresponds to non-movement at the initial position.
• The state one of a bit corresponds to a movement step along one of four possible

orthogonal directions.
• In a mechanical relay, the actuator plate can either push or pull the actuated plate.
• Multiple actuator plates can push on the same actuated plate (rectification).

3.5 The Memory of the Z1 59

• The actuated plate of a mechanical relay can be the control plate of another
mechanical relay.

• Mechanical relays can be combined to produce all logic functions.
• To simplify the circuits, a “common cycle” consisting of four orthogonal

movements, called I, II, III, and IV, is used. The subcycles allow the machine
to synchronize its computations.

• If a mechanical relay activates the control plate at subcycle I, II, III, or IV, it
returns the control plate to the original position at subcycle III, IV, I, or II,
respectively.

• If the actuated plate is moved in subcycle I, II, III, or IV, it returns to its original
position in subcycle III, IV, I, or II, respectively.

• Movement along any of the four orthogonal directions can be reversed or rotated
by . 90◦, clockwise or counterclockwise, using levers.

• A mechanical relay can be used as a delay element (since a mechanical relay only
copies a bit after one subcycle).

Based on the principles listed above, Zuse’s mechanical diagrams read very much
like electrical circuits and can also be used to build machines based on telephone
relays (as Zuse later did without having to modify his notation).

3.5 The Memory of the Z1

Until now, the memory of the Z1 was the best-understood part of the Z1 (Zuse
1955). It was described by Schweier and Saupe (Schweier and Saupe 1988) in the
1980s. A similar type of memory was used for the Z4, which had a processor built
with telephone relays, but the memory was mechanical, just like in the Z1. The
mechanical memory of the Z4 is now housed in Deutsches Museum in Munich. Its
operation was simulated on a computer by a student assistant.

The main concept used in the Z1 was that a bit could be stored using a vertical
pin that could be set in one of two possible positions (Zuse 1954). One position
represents 0, the other position represents 1. The diagram in Fig. 3.18 shows how a
memory bit can be overwritten.

Figure 3.18 shows the sequence of plates’ movements required to write a 1 into a
memory cell. From left to right, we first see the pin located at the 0 position. In the
second image, the control plate moves up. In the third step, the horizontal actuated
plate is moved from right to left, and this pushes the pin to the position 1. In the last
step, the control plate moves down, and the horizontal plate returns to its original
position. The overall effect is to move the pin from position 0 to position 1. From
the diagram, it is not difficult to see how a zero can be stored: instead of moving the
horizontal plate from right to left, we would move it from left to right. Reading a bit
required a different combination of plate movements.

60 3 The Z1: Architecture and Algorithms of Zuse’s First Computer

Fig. 3.18 One mechanical bit in the memory. The pin can be stored in the 0 or 1 position. Its
position can be read

Memory words were addressed by decoding the six bits used for an address.
Three bits selected one of eight layers; the other three selected one of eight memory
words. The decoding circuit for each layer was a classic binary tree of relays with
three levels, as used in the Z3 (with a different number of levels). We do not delve
further into the structure of the mechanical memory. The details can be consulted in
Schweier and Saupe (1988).

3.6 The Addition Unit of the Z1

The addition unit of the reconstructed Z1 differs from the type of addition unit
described by Konrad Zuse in a document finished after the war. In this document
(Zuse 1952a), the binary digits are handled using OR, AND, and identity (NOT-
XOR) logic gates. In the Z1 reconstruction, the addition unit uses two XORs and
one AND computation.

The first two computations performed during an addition are: (a) the bitwise
XOR of the two registers to be added, storing the result, (b) the bitwise AND of the
two registers to be added, storing the result. The third step is the computation of the
carry bits using the information from the AND and the XOR operations. Once the
carry bits have been set, the final step is to compute a bitwise XOR of the carry bits
with the result of the first bitwise XOR. The following example shows how to add
two binary numbers using the steps described above.

3.7 The Sequencer of the Z1 61

Zuse used “anticipating carriage” in all his machines. Instead of propagating a
carry through the different binary powers sequentially, the carry can be set for all
positions in one step. The example above illustrates the procedure. The first XOR is
the partial result of the sum of the two registers without considering the carries. The
AND computes the generation of carry bits: they are transported to the next bit to the
left, but are further transported to the next binary position as long as there is a one in
the result of the previous XOR computation. In the example, the first carry computed
with the AND is transformed into three carries, which are finally XORed with the
result of the first XOR. A sequence of consecutive 1’s from the XOR operation acts
as a kind of conveyor belt for transporting AND-generated carries until the chain of
1’s breaks.

The circuit shown in Fig. 3.19 is the mechanical addition arrangement used in
the reconstructed Z1. The diagram shows the addition of two bits stored in the a
and b rods (a could be the i-th bit of register Aa, and b the corresponding bit of
register Ab). The XOR and the AND computations are performed in parallel using
the binary gates 1, 2, 3, and 4. The AND operates on gate 5, generating the carry bit
.ui + 1, while the XOR closes or leaves open the “chain” of XOR bits using gate 6.
Gate 7 is an auxiliary gate for passing the XOR result to the upper level. Gates 8 and
9 compute the final XOR to complete the addition. The movements of the different
components are indicated by the arrows. All four cycle directions are used, that is,
an addition takes one full cycle, from loading the operands to producing the result.
The result is passed to rod e, the i-th bit of the register Ae.

This addition circuit is located in layers 1, 2, and 3 of the addition block
(see Fig. 3.19). It is remarkable that Konrad Zuse, who had no formal training in
binary logic, worked with anticipating carriage. The ENIAC, the first large-scale
electronic computer, propagated the carry sequentially from one decimal position in
an accumulator to the next. The Harvard Mark I used anticipating decimal carriage.

3.7 The Sequencer of the Z1

Each operation in the Z1 is broken down into a sequence of microinstructions. This
is done by a kind of table of “criteria” consisting of 108 metallic decoding plates.
Each plate is a decoder for a specific value of ten bits. When the specific 10-bit

62 3 The Z1: Architecture and Algorithms of Zuse’s First Computer

Fig. 3.19 Addition unit of the Z3. Computation runs from left to right. Bitwise AND and XOR
are computed first (gates 1, 2, 3, 4). The carry bits are computed in engagement II (gates 5 and 6).
In engagement III, an XOR finishes the computation of the addition (gates 8 and 9)

sequence for the decoder plate is selected, the plate snaps into place and presses on
four bits (A, B, C, D) that activate the levers for the required microoperation in the
processor. The plates are arranged in a vertical stack across twelve levels of the Z1
so that when a decoder plate is activated, it selects both the microoperation and the
layer of the machine in which it will be processed.

Figure 3.20 shows a decoder plate before it snaps in and selects a microoperation
(upper diagram), and once it has been activated (lower diagram). The 10 bits to be
decoded are labeled in Fig. 3.21:

• The Op0, Op1, and Op2 bits contain the binary opcode of the instruction
• The bits S0 and S1 are condition bits set by other parts of the machine. When

S0=1, for example, an addition is transformed into a subtraction.
• The bits Ph0, Ph1, Ph2, Ph3, and Ph4 are used to count the number of microcycles

(or “phases”) in an instruction. Multiplication, for example, is executed in 20
phases and the five bits Ph0 to Ph4 advance from 0 to 19 during the operation.

These 10 bits specify the operation that is active (with the opcode), if there are
special conditions (with the bits S0 and S1), as well as the current “phase”, i.e., the
microinstruction to be executed next. The 10 bits theoretically allow us to define up
to 1024 different conditions or cases. An instruction can consist of up to 32 phases.

3.7 The Sequencer of the Z1 63

Fig. 3.20 A decoder plate being blocked by the current value of 10 bits (upper image) or after it
snaps to the right due to the value of the 10 bits (lower image)

Fig. 3.21 Two control plates. The upper one has been activated by the value of the 10 observed
bits. The lower one is blocked. The upper decoder selects the microoperation for the mantissa’s
ALU, the lower one for the exponent’s ALU

64 3 The Z1: Architecture and Algorithms of Zuse’s First Computer

In Fig. 3.20, we can see one decoder plate. Springs pull it to the right. The
decoder plate cannot move (upper image) because it is blocked by the current value
of the 10 bits listed above. The value of the 10 bits is represented by 10 rods, shown
here as 10 small red rectangles. The rectangles can move up (to the 1 position) or
stay where they are (0 position). Note that there are two types of hooks in the lower
part of the decoder plate. The longer hooks are blocked when the corresponding bit
is 0. The shorter hooks can block the plate when the corresponding bit is 1.

The lower diagram in Fig. 3.20 now shows what happens when the values of the
10 bits are exactly those for which the plate was designed. Five bits are now ones,
and their corresponding small rectangular rods have moved up. The long hooks
are no longer blocked. The small hooks are not blocking either, given that their
associated bits have the value zero. Now the decoder plate snaps to the right and
selects a four-bit encoding of the required microoperation. Since this happens in a
vertical stack of decoder plates, both the microoperation and the required layer of
the Z1 get selected.

Zuse always put two decoder plates together at the same level in the vertical stack
of plates. One of the plates could snap to the left to select the microoperation for the
exponent ALU, and another could snap to the right to select the microoperation for
the mantissa ALU (Fig. 3.21).

Controlling the Z1 thus amounts to adjusting the teeth of the metal plates so that
each one of them responds to a specific ten-bit combination, to act on the left or
right components. The left side controls the exponent’s half of the processor while
the right side controls the mantissa’s half. The four bits A, B, C, or D are selected
by a microcontrol plate (by not pressing on them). Figure 3.22 shows a top view of
the stack of criteria plates.

Fig. 3.22 Photograph of the Z1 decoding unit. We can see one decoder on top. Up to 108 decoder
plates were stacked vertically, in pairs (http://zuse.zib.de)

http://zuse.zib.de
http://zuse.zib.de
http://zuse.zib.de
http://zuse.zib.de

3.8 The Processor’s Datapath 65

3.8 The Processor’s Datapath

Figure 3.23 shows the floating-point processor of the Z1. The processor has one
datapath for handling the exponents (left side) and one for handling the mantissas
(right side). The floating-point registers F and G consist of 7 bits for the exponent
and 20 bits for the mantissa (expanded from 16 in memory). The exponent-mantissa
pair (Af,Bf) is called floating-point register F, and the pair (Ag,Bg) is called floating-
point register G. The signs of the arguments are handled externally in a sign unit.
The sign of a product or division is computed in advance. The sign of an addition or
subtraction is set after the operation takes place.

In Fig. 3.23, we can see the registers F and G and their connections to the rest
of the processor. The combined FP ALU (Arithmetic Logic Unit) contains two FP
registers: the pair (Aa,Ba) and the pair (Ab,Bb). These registers are the direct inputs
to the ALUs. They must be loaded and may retain partial results during several
iterations due to the feedback bus from the ALU-outputs Ae and Be.

In the Z1, the data buses are used in “open collector” mode, that is, many inputs
can push on the same data line (which is a mechanical component). There is no need
to “electrically” isolate the data lines from the inputs, since no electricity is involved.

Fig. 3.23 The processor datapath in the Z1. The left part corresponds to the exponent’s ALU and
registers and the right side to the mantissa’s. The results Ae and Be can be fed back to the temporary
registers or be negated or shifted. The four bits representing a decimal digit are copied to register
Ba directly, one digit after another, using four bits. The decimal-binary conversion operates on this
data

66 3 The Z1: Architecture and Algorithms of Zuse’s First Computer

Since a zero input represents no movement of a mechanical part (no pushing), while
a 1 represents a movement (pushing), there is no conflict between the parts. If two
parts push on the same data line, the only important thing is that they act in step
with the machine cycle (pushing only works in one direction).

The only registers visible to the programmer are (Af,Bf) and (Ag,Bg). They have
no address; the first register loaded by a Load operation is (Af,Bf), the second
register loaded afterward is (Ag,Bg). Once two registers have been loaded, the
arithmetic operations can be started. (Af,Bf) is also the result register for arithmetic
operations. The second register can be loaded after an arithmetic operation and be
the second argument for a new arithmetic operation. This scheme of register usage
is similar to that of the Z3, but the coordination between main and auxiliary registers
is simpler in the Z1. The unit Bf can shift the mantissa it contains one place to the
right or left. This capability is used for the multiplication and division algorithms,
as explained in the sections below.

As can be seen from the processor datapath, the individual registers Aa, Ab,
Ba, and Bb can be loaded with different kinds of data: values from other registers,
constants (. +1, . +1, 3 and 13), negative values from other registers, and the values
coming back from the ALUs. The ALU outputs can be negated or shifted. A shift
of n places to the left is represented by a box containing a multiplication with . 2n; a
shift of n places to the right is represented by a division with . 2n. These boxes are
mechanical circuits producing the appropriate bit-shifts or bit-complements. The
result of the addition of the registers Ba and Bb, for example, is stored in Be and
can be transformed in several ways: the result Be can be negated (. −Be), shifted
one or two places to the right (Be/2, Be/4), or shifted one or three places to the
left (2Be, 8Be). Each of these computations is performed in a different layer of the
mechanical stack of layers that make up the ALU. The appropriate result, depending
on the active computation, is returned to register Ba or Bb. Case selection is done
by levers that activate the appropriate layer as selected by the microcontroller. The
result Be can also go straight to the memory unit (the corresponding bus line is not
shown in Fig. 3.23).

The ALU performs an addition in each cycle. All registers Aa, Ab, Ba, and Bb
are cleared after an ALU computation and can be reloaded with the feedback values.

Register Ba has a special use for the conversion of four decimal digits to binary.
Each decimal digit entered through the mechanical panel is transformed into four
bits. Groups of four bits are fed directly into register Ba (at position .2−13), which can
advance the four bits by performing a multiplication by a factor of 10, then adding
the next digit to the partial result, multiplying again by 10, and so on. For example,
to transform the number 8743 from decimal to binary, the digit 8 is entered first and
multiplied by 10. Then 7 is added to the result, and the new sum (87) is multiplied
by 10. The result (870) is then added to 4 and so on. This yields a simple algorithm
for the conversion of decimal input to a binary number. During this process, the
exponent half of the processor adjusts the exponent of the final floating-point result
(therefore, the constant 13 in the exponent ALU, which corresponds to .2+13 (see
decimal-binary conversion algorithm further down).

3.8 The Processor’s Datapath 67

Fig. 3.24 The layered spatial distribution of operations in the processor. The shifters for Be are
on the left stack. The addition unit is distributed between the three leftmost stacks. The shifters for
Bf are in the right stack as is the binary equivalent of .10−6. The result goes to memory through
the line labeled Res on the right. The two registers Bf and Bg arrive from memory as first (Op1) or
second operand (Op2)

Figure 3.24 shows the spatial distribution of the different elements of the
processor datapath for the mantissa part. All the shifters have been allocated in
different layers of the twelve constituting the leftmost module of the machine. The
registers Bf and Bg come from the right side, directly from memory (layers 5 and 7).
The result Be is fed back to memory, passing through level 8. The bits of the registers
Ba, Bb, and Be are stored in vertical rods (only one bit is shown in this cross-section
of the processor). The ALU is distributed across two stacks of mechanical layers.
Levels 1 and 2 compute the AND and XOR of each bit in Ba and Bb. The results
are passed to the right, where the carry bits and the final XOR are computed and
stored in Be. The result Be can go back to be stored in memory or can be shifted in
all the different ways shown, before being fed back to Ba or Bb, as desired. Some
circuits seem redundant (there are two ways of loading Be into Ba, for example), but
they represent alternatives. Level 12 loads Be into Ba unconditionally, level 9 only
if the exponent Ae is zero. The green boxes in the diagram are empty layers where
no computation takes place and mechanical components can pass through. The box
around the bars Bf and Bf’ contains the shifter for Bf needed for multiplication
(where the bits of Bf are read one by one, starting with the lowest binary power).

Now you can imagine the computational flow in this machine: data flow from
the registers F and G into the machine, filling the A and B register pairs. A single
addition or sequences of additions/subtractions (for multiplication or division) are
performed. Partial results are recycled into the A and B registers until the result is
complete. The final result is then loaded into register F, and a new computation can
be started (Fig. 3.25).

68 3 The Z1: Architecture and Algorithms of Zuse’s First Computer

Fig. 3.25 Communication between the exponent and the mantissa ALUs

3.9 Conclusions

The original Z1 was destroyed during an Allied bombing raid flown in December
1943 over Berlin. It is impossible to decide today if the original Z1 was identical
to the reconstructed Z1. The few surviving photographs show that the original
was bulkier and had a less regular shape. We can only take Zuse’s word for it.
However, I believe that he had no real reason to consciously “embellish” the original
machine through the reconstruction. Memory can be a tricky fellow, though. The
few notes Zuse scribbled between 1935 and 1938 seem to be consistent with the
later reconstruction. The Z3 was finished in 1941, and according to Zuse, the logic
design was very similar (Fig. 3.26).

Siemens (the company that acquired Zuse’s firm), together with the companies
Nixdorf, AEG, DATEV, and Krupp Atlas, financed the reconstruction of the Z1 in
the 1980s. Zuse did all the construction work at his home, with the help of two
students. When the Z1 was finished, part of the wall on the upper floor of Zuse’s
house had to be removed so that a large crane could lift the machine for transport to
Berlin.

3.9 Conclusions 69

Fig. 3.26 Sketch of one of Zuse’s early designs for a Z1 reconstruction. Undated (http://zuse.zib.
de)

The reconstructed Z1 is a very elegant computer, consisting of thousands of
components but not one too many. It would have been possible to use only two
shifters at the output of the mantissa ALU (a shift of one bit to the left, and one bit
to the right), but the choice of shifters made by Zuse speeds up the basic arithmetic
operations significantly, at a low cost in components. I find the processor of the
Z1 rather more elegant than the processor of the Z3 because it is more compact and
“fundamental.” It is as if when Zuse moved to telephone relays, the simpler and more
reliable components allowed him to be “profligate” with the size of the CPU. The
same thing happened when the Z4 was finished. The Z4 was just a bigger Z3, but the
computer architecture was roughly the same, although the Z4 had more instructions.
The mechanical Z1 never worked consistently, and Zuse himself later called the
mechanical realization “a dead end.” He used to joke that the 1989 reconstruction of
the Z1 was quite accurate, because the original was not reliable, and neither was the
reconstruction. Oddly enough, the mechanical memory design was reliable enough
to be reused for the Z4, as a way to save telephone relays. The mechanical memory
of the Z4 was operational from 1950 to 1955 in Switzerland, where the machine
was installed at the ETH Zurich (Bruderer 2012). As late as December 1944, Zuse

http://zuse.zib.de
http://zuse.zib.de
http://zuse.zib.de
http://zuse.zib.de

70 3 The Z1: Architecture and Algorithms of Zuse’s First Computer

wrote the following about mechanical components: “According to the present stage
of development, it can be safely said that the future belongs to the mechanical gates,
because of their mentioned advantages, and they must be preferred also because of
the present war conditions. A series of 12 complete mechanical devices (i.e. Z4s)
could be built with 100,000 to 150,000 man-hours. Their computing power could
replace up to one million man-hours per year” (Zuse 1944).

What I find most surprising is how the young Konrad Zuse could come up with
such an elegant design for a computing engine. He even calculated the numerical
accuracy that his machine would have (Zuse 1936c). While the ENIAC or Mark
I teams in the USA consisted of seasoned scientists and electronics experts, Zuse
was working in isolation and without previous experience. However, from an
architectural point of view, we compute today as Zuse did in 1938, not as the ENIAC
did in 1945 (Goldstine and Goldstine 1996). More elegant architectures appeared
later with the EDVAC report and the bit-serial machines developed by von Neumann
and Turing.

Appendix: The Arithmetic Instructions

As explained above, the Z1 could perform the four basic arithmetic operations.
In the tables discussed below, the convention has been used of representing a
binary one with the letter “L.” The tables show the sequence of microinstructions
required for each operation and how this affects the data flow between the registers
in the processor. One table summarizes addition and subtraction (using two’s
complement), one table summarizes multiplication, and one table is for division.
There is also one table for each of the two I/O operations: decimal-binary and
binary-decimal conversion. The tables are divided into Part A for the exponent, and
Part B for the mantissa. The registers Aa, Ab, Ba, and Bb are loaded as shown
in each row of a table. The phase of the operation is given by the column labeled
“Ph.” Conditions can trigger an operation or inhibit it from starting. When a row is
executed, condition bits can be set, or the next phase (Ph) can be computed by the
incrementer.

Addition/Subtraction

The table of microinstructions (Fig. 3.27) covers both addition of numbers and
subtraction. The main problem for both operations is to scale the two numbers to be
added/subtracted so that the binary exponent is the same. Assume that the numbers
.m1 × 2a and .m2 × 2b are to be added. If .a = b the two mantissas can be added
immediately. If .a > b then the smaller number is rewritten as .m2 × 2b−a × 2a .

Appendix: The Arithmetic Instructions 71

Fig. 3.27 The microinstructions for addition and subtraction. An addition is finished in 5 cycles,
a subtraction in 6

The first multiplication is equivalent to shifting the mantissa . m2 by .(a − b) places
to the right (making the mantissa smaller). Let us call .m′

2 = m2 × 2b−a . The two
mantissas to be added are now .m1 and . m′

2. The common binary exponent is . 2a . A
similar procedure is used when .a < b.

Once the numbers have been aligned, condition bit S0 is tested (cycle 4). If S0 is
1, the mantissas are added. If S0 is 0, the mantissas are subtracted in that cycle.

In the table (Fig. 3.27), the maximum binary exponent of the two numbers is
found first, and the mantissa of the smaller number is shifted to the right as many
places as necessary, until the two binary exponents are equal. The actual addition
starts in cycle 4 and is performed by the ALU in just one cycle. In cycle 5, it is
tested to check if the new result mantissa is normalized, and if not, it is shifted to
normalize it. It can happen (after a subtraction) that the result mantissa is negative,
in which case the result is negated to make it positive. This change of sign is stored
in the condition bit S3 to make the necessary adjustment to the sign of the final
result. At the end, the result is normalized.

72 3 The Z1: Architecture and Algorithms of Zuse’s First Computer

The sign unit near the tape reader (see Fig. 3.5, Block 16) computes the sign of
the result and the type of operation in advance. If we assume that the mantissas x and
y are positive, then we have the following four cases for addition and subtraction
(after having assigned the sign of each number). We call the result z:

(a) . z = +x + y

(b) . z = +x − y

(c) . z = −x + y

(d) . z = −x − y

Cases (a) and (d) can be handled with an addition in the ALU. In case (a), the
result will be positive. In case (d), it will be negative. Cases (b) and (c) require a
subtraction. The sign of the subtraction is computed in phase 5 (Fig. 3.27).

An addition runs in the following steps:

• Determine the absolute difference of exponents D in the exponent unit
• Select the largest exponent
• Shift the mantissa of the smaller number D times to the right
• Add the mantissas
• Normalize the result
• The sign of the result is the sign of both arguments.

A subtraction runs in the following steps:

• Determine the absolute difference of exponents D in the exponent unit
• Select the largest exponent
• Shift the mantissa of the smaller number D times to the right
• Subtract the mantissas
• Normalize the result
• The sign of the result is the sign of the largest number (in absolute value).

The final sign of the result is determined through the sign unit, which has a
preliminary sign for the operation.

The following table may seem redundant, but it is a symbolic translation of the
table in Fig. 3.27. It is useful because it can show the reader how to interpret the
algorithmic tables for the arithmetic operations in the Z1.

Appendix: The Arithmetic Instructions 73

Phase Operations in the ALUs Comments

0 Ae=Af. −Ag Difference of exponents

1 IF(Ae .≥ 0) S1=1, Aa=Ae Register F has larger number, recycle Ae

2 IF(S1=0) Aa=. −Ae Make Ae positive

ELSE Aa=Ae Ae is positive

IF (S1=0) Bb=Bg ELSE Bb=Bf Put smaller number’s mantissa in Bb

3 WHILE (Ae. �=0)

Ba=Be/2; Ae=Ae. −1 Shift right smaller mantissa by exponent
difference

ELSE Ba=Be

4 IF (S1=1) Select exponent and mantissa of largest
number

Aa=Af; Bb=Bf

ELSE

Aa=Ag; Bb=Bg

5 IF (S0=1) It is addition

IF (Ae<2) Ba=Be If result .< 2, leave unchanged

ELSE Bb=Be/2, Ae=Ae.+1 If result .≥ 2, shift right, increase exponent)

ELSE it is subtraction

IF (diff. negative) Ba=. −Be; S3=1 If difference negative, make diff. positive, set
flag

ELSE Bb=Be

6 WHILE (Be.�= 0) Ba=2Be; Ae=Ae.−1 Shift left until leading bit is 1, decrease
exponent

final result in (Ae,Be), set sign

The flag S3 is set when the difference of the two numbers is negative, after a
subtraction. This flag is used by the sign unit so that the final sign of the number can
be determined. This case can happen when the exponents of the two numbers are
equal, but the mantissas are different.

The Problem of Zero

Zuse used normalized floating-point numbers, i.e., a representation where the
leading bit of the mantissa, before the point, is 1. A binary normalized mantissa
can be something like 1.001, but not 10.01, nor 0.1001. This is a simplification
that is useful for the numerical algorithms and saves one bit of memory since the
leading bit of the mantissa does not have to be stored (it is always 1). However,
the number zero cannot be represented in the computer if the mantissa must be
normalized! The solution adopted by Zuse in the Z3 was that the lowest possible
exponent (.−64) represented zero, regardless of the mantissa. Before an arithmetic
operation is started, the computer has to check if zero is involved. If so, the results

74 3 The Z1: Architecture and Algorithms of Zuse’s First Computer

are trivial, and the ALU does not have to go through the entire numerical algorithm.
Multiplication by zero, for example, is zero. Division by zero produces an error, and
so on.

The tables in this appendix do not deal with the case where one or both arguments
are zero. The implicit assumption is that checking for zero is done before the
arithmetic algorithms are started. The Z3 had the necessary logic for this check.
The Z1, alas, did not! The reason is that Zuse built the Z1 as a mechanical proof of
concept leaving such implementation details for the next machine. He was aware of
the necessary logic as his technical descriptions show (Zuse 1938).

It is interesting to know that the Z1 reconstruction of 1989 was accurate in that
respect: it could not compute with a zero argument! The tables do not check for
intermediate results that could be zero (for example, after a subtraction either). This
would have been handled by a runtime exception, as in the Z3.

Multiplication

For multiplication, first, the exponents of the two numbers are added in cycle 0
(criterion 21, exponent part, Fig. 3.28). Then 17 cycles are used to examine every
bit of the mantissa in Bf, starting from the lowest power, all the way to the highest
binary power in the mantissa (from the bit at position .−16 to position 0). The register

Fig. 3.28 The microinstructions for multiplication. The multiplier-mantissa Bf is stored in a shift
register (shift right). The multiplicand-mantissa is stored in register Bg

Appendix: The Arithmetic Instructions 75

Bf is shifted to the right once at each step. The bit mm in the table contains the
previously shifted-out bit at position .−16. If the shifted-out bit is 1, then Bg is
added to the partial result (which has been shifted previously one position to the
right); otherwise, zero is added. Therefore, this algorithm computes the result

. Be = Bf0 × 20 × Bg + Bf−1 × 2−1 × Bg + · · · + Bf−16 × 2−16 × Bg

If the mantissa after the multiplication is greater than or equal to 2, the result is
normalized in cycle 18 by shifting it one position to the right. Cycle 19 puts the final
result on the data bus.

Division

The division algorithm takes 21 cycles and is based on so-called “non-restoring
floating-point division” (Fig. 3.29). The bits of the quotient are calculated one by
one, starting with the most significant bit and going down to the less significant bits.

First, the difference of the exponents is computed in cycle 0, and then the division
of the mantissas is executed. The divisor mantissa is stored in Register Bg and the
dividend mantissa in Register Bf. The remainder is initialized to Bf in cycle 0. In
each subsequent cycle, the divisor is subtracted from the remainder. If the result is

Fig. 3.29 The microinstructions for division. The dividend-mantissa in Bf is pushed bit by bit in
a shift register (shift left). The divisor-mantissa is kept in register Bg

76 3 The Z1: Architecture and Algorithms of Zuse’s First Computer

positive, the corresponding bit in the mantissa of the result is set to 1. If the result is
negative, the bit in the mantissa of the result is set to 0. The bits of the quotient are
computed one by one, from bit 0 to bit . −16. There is a mechanism in the Z1 to set
the bits of register Bf one by one, as needed.

If the remainder becomes negative, there are two possible strategies for continu-
ing. In “restoring division,” the divisor D is added back to the remainder (R-D) to
reproduce the positive remainder R. Then the remainder is shifted one position to
the left (which is equivalent to shifting the divisor to the right) and the algorithm
continues. In “non-restoring division,” the remainder (R-D) is shifted one position
to the left and then the divisor D is added. Since, in the previous step, (R-D) was
negative, the shift to the left transforms this quantity into (2R-2D). If we now add the
divisor, we obtain (2R-D), which is the subtraction of D from the left-shifted positive
R, as we want to have in the next step of the division algorithm. The algorithm can
continue in this way until the remainder becomes positive, and then we continue by
subtracting the divisor D again. In the table below u refers to the carry bit for the
binary power at position 2. If this bit is set, the result of the addition was negative
(in two’s-complement arithmetic). Non-restoring division is a very elegant way to
compute the quotient of two floating-point mantissas, since the restoring step (an
additional cycle) is avoided.

Somewhat puzzling is the fact that the Z3 first tested whether the subtraction of
Ba and Bb could become negative during a division, in which case the subtraction
was “undone” by using a shortcut bus from Ba to Be (eliminating the result of the
subtraction). This extra hardware was not used in the reconstructed Z1, and the non-
restoring algorithm seems more elegant than the solution used in the Z3.

Input and Output

The input panel consists of four columns of 10 small plates each. In each column
(called Za3, Za2, Za1, and Za0, in that order, from left to right) the operator can pull
out any of the digits 0 to 9. He or she can thus enter any four-digit decimal number
using the four columns. Pulling a digit plate just generates its binary equivalent in
the input console (using four bits). The input console is therefore just a 4-by-10
table of the 10 binary equivalents of the digits 0 to 9.

The microcontroller of the Z1 then controls passing each decimal digit Za3, Za2,
Za1, and Za0 to the datapath through register Ba (at position .Ba−13 corresponding
to the power .2−13). Za3 is entered first (in register Ba), and then a multiplication by
10 is performed. Digit Za2 is next, and another multiplication by 10 ensues. This
is repeated for all four digits. The binary equivalent of the four decimal digits is
contained in the Be after cycle 7. In cycle 8, the mantissa is normalized, if necessary.
The constant 13 (LL0L in binary) is added once to the exponent (phase 7) to account
for the fact that the digits are entered at the mantissa bit .−13 (Fig. 3.30).

Appendix: The Arithmetic Instructions 77

Fig. 3.30 The microinstructions for decimal-binary conversion. Four decimal digits are entered
through a mechanical device

Fig. 3.31 The microinstructions for binary-decimal conversion. Four decimal digits are displayed
in a mechanical device

The decimal exponent of the number is set with a lever. In cycle 9, as many
multiplications with the factor 10 are performed as indicated by the position of the
lever for the decimal exponent.

The table in Fig. 3.31 shows how a binary number contained in register Bf is
transformed into a decimal number to be displayed in the decimal output field.

To avoid having to deal with negative decimal exponents, the number in register
Bf is first multiplied by .10−6 (Zuse limited the operating range of the machine to
handle only numbers larger than .10−6 as result, although partial results in the ALU
could be smaller than this). This happens after phase 1. This multiplication is done

78 3 The Z1: Architecture and Algorithms of Zuse’s First Computer

by the multiplication operation in the Z1, and the decimal-binary conversion remains
“suspended” during the cycles needed for the multiplication.

Then the mantissa is shifted two places to the right (to set the binary point so that
we can now have four bits to its left). The mantissa is shifted until the exponent is
positive, and then three multiplications by 10 follow. After each multiplication, the
integer part of the mantissa is copied, erased from the mantissa, and the copy (four
bits) is transformed into a decimal digit using a table (that is the 2B’-8B’ operation
in phase 4 to 7). Each decimal digit is displayed in the output panel (starting with
the most significant decimal digit). Each time a multiplication by 10 is performed,
the exponent arrow in the decimal display moves one place to the left.

References

Bruderer, H. 2012. Konrad Zuse und die Schweiz: Wer hat den Computer erfunden? Munich:
Oldenbourg Wissenschaftsverlag. https://doi.org/10.1524/9783486716658

Goldstine, H.H., and A. Goldstine. 1996. The Electronic Numerical Integrator and Computer
(ENIAC). Annals of the History of Computing 18 (1): 10–16. https://doi.org/10.1109/85.476557

Materna, H. 2010. Die Geschichte der Henschel Flugzeug-Werke in Schönefeld bei Berlin 1933-
1945. Bad Langensalza: Verlag Rockstuhl.

Rojas, R. 1997. Konrad Zuse’s Legacy: The Architecture of the Z1 and Z3. IEEE Annals of the
History of Computing 19 (2): 5–16. https://doi.org/10.1109/85.586067

Rojas, R. 1998. Die Rechenmaschinen von Konrad Zuse. Springer-Verlag, Berlin,
DOI 10.1007/978-3-642-71944-8

Rojas, R. 2014. The Z1: Architecture and Algorithms of Konrad Zuse’s First Computer. https://
arxiv.org/abs/1406.1886, arXiv eprint

Rojas, R. 2016. The Design Principles of Konrad Zuse’s Mechanical Computers. https://arxiv.org/
abs/1603.02396, arXiv eprint

Schweier, U., and D. Saupe. 1988. Funktions- und Konstruktionsprinzipien der Program-
mgesteuerten Rechenmaschine “Z1”. Arbeitspapiere der Gesellschaft für Mathematik und
Datenverarbeitung 321

Zuse, K. 1936a. Die Aufstellung der Rechenpläne. Deutsches Museum Digital. http://digital.
deutsches-museum.de/item/NL-207-0208/

Zuse, K. 1936b. Die Rechenmaschine des Ingenieurs. Deutsches Museum Digital. http://digital.
deutsches-museum.de/item/NL-207-0209/

Zuse, K. 1936c. Die Rechenmaschine des Ingenieurs. Mathematische Probleme. Deutsches
Museum Digital. http://digital.deutsches-museum.de/item/NL-207-0214/

Zuse, K. 1937. Einführung in die allgemeine Dyadik. Deutsches Museum Digital. http://digital.
deutsches-museum.de/item/NL-207-0211/

Zuse, K. 1938. Die Rechenmaschine des Ingenieurs. Available online at the Zuse Internet Archive
Zuse, K. 1944. Mechanische Schaltgliedtechnik. Deutsches Museum Digital. http://digital.

deutsches-museum.de/item/NL-207-0226/
Zuse, K. 1952a. Rechenvorrichtung aus mechanischen Schaltgliedern. http://zuse.zib.de/
Zuse, K. 1952b. Rechenvorrichtungen aus mechanischen Schaltgliedern. Deutsches Museum

Digital. http://digital.deutsches-museum.de/item/NL-207-0961/
Zuse, K. 1952c. Theorie der mechanischen Schaltglieder. Available online at the Zuse Internet

Archive
Zuse, K. 1954. Patentschrift nr. 907948: Mechanisches Schaltglied (für die Zuse KG). Deutsches

Museum Digital. http://digital.deutsches-museum.de/item/NL-207-0999/

https://doi.org/10.1524/9783486716658
https://doi.org/10.1524/9783486716658
https://doi.org/10.1524/9783486716658
https://doi.org/10.1524/9783486716658
https://doi.org/10.1524/9783486716658
https://doi.org/10.1524/9783486716658
https://doi.org/10.1109/85.476557
https://doi.org/10.1109/85.476557
https://doi.org/10.1109/85.476557
https://doi.org/10.1109/85.476557
https://doi.org/10.1109/85.476557
https://doi.org/10.1109/85.476557
https://doi.org/10.1109/85.476557
https://doi.org/10.1109/85.586067
https://doi.org/10.1109/85.586067
https://doi.org/10.1109/85.586067
https://doi.org/10.1109/85.586067
https://doi.org/10.1109/85.586067
https://doi.org/10.1109/85.586067
https://doi.org/10.1109/85.586067
https://arxiv.org/abs/1406.1886
https://arxiv.org/abs/1406.1886
https://arxiv.org/abs/1406.1886
https://arxiv.org/abs/1406.1886
https://arxiv.org/abs/1406.1886
https://arxiv.org/abs/1406.1886
https://arxiv.org/abs/1603.02396
https://arxiv.org/abs/1603.02396
https://arxiv.org/abs/1603.02396
https://arxiv.org/abs/1603.02396
https://arxiv.org/abs/1603.02396
https://arxiv.org/abs/1603.02396
http://digital.deutsches-museum.de/item/NL-207-0208/
http://digital.deutsches-museum.de/item/NL-207-0208/
http://digital.deutsches-museum.de/item/NL-207-0208/
http://digital.deutsches-museum.de/item/NL-207-0208/
http://digital.deutsches-museum.de/item/NL-207-0208/
http://digital.deutsches-museum.de/item/NL-207-0208/
http://digital.deutsches-museum.de/item/NL-207-0208/
http://digital.deutsches-museum.de/item/NL-207-0208/
http://digital.deutsches-museum.de/item/NL-207-0208/
http://digital.deutsches-museum.de/item/NL-207-0209/
http://digital.deutsches-museum.de/item/NL-207-0209/
http://digital.deutsches-museum.de/item/NL-207-0209/
http://digital.deutsches-museum.de/item/NL-207-0209/
http://digital.deutsches-museum.de/item/NL-207-0209/
http://digital.deutsches-museum.de/item/NL-207-0209/
http://digital.deutsches-museum.de/item/NL-207-0209/
http://digital.deutsches-museum.de/item/NL-207-0209/
http://digital.deutsches-museum.de/item/NL-207-0209/
http://digital.deutsches-museum.de/item/NL-207-0214/
http://digital.deutsches-museum.de/item/NL-207-0214/
http://digital.deutsches-museum.de/item/NL-207-0214/
http://digital.deutsches-museum.de/item/NL-207-0214/
http://digital.deutsches-museum.de/item/NL-207-0214/
http://digital.deutsches-museum.de/item/NL-207-0214/
http://digital.deutsches-museum.de/item/NL-207-0214/
http://digital.deutsches-museum.de/item/NL-207-0214/
http://digital.deutsches-museum.de/item/NL-207-0214/
http://digital.deutsches-museum.de/item/NL-207-0211/
http://digital.deutsches-museum.de/item/NL-207-0211/
http://digital.deutsches-museum.de/item/NL-207-0211/
http://digital.deutsches-museum.de/item/NL-207-0211/
http://digital.deutsches-museum.de/item/NL-207-0211/
http://digital.deutsches-museum.de/item/NL-207-0211/
http://digital.deutsches-museum.de/item/NL-207-0211/
http://digital.deutsches-museum.de/item/NL-207-0211/
http://digital.deutsches-museum.de/item/NL-207-0211/
http://digital.deutsches-museum.de/item/NL-207-0226/
http://digital.deutsches-museum.de/item/NL-207-0226/
http://digital.deutsches-museum.de/item/NL-207-0226/
http://digital.deutsches-museum.de/item/NL-207-0226/
http://digital.deutsches-museum.de/item/NL-207-0226/
http://digital.deutsches-museum.de/item/NL-207-0226/
http://digital.deutsches-museum.de/item/NL-207-0226/
http://digital.deutsches-museum.de/item/NL-207-0226/
http://digital.deutsches-museum.de/item/NL-207-0226/
http://zuse.zib.de/
http://zuse.zib.de/
http://zuse.zib.de/
http://zuse.zib.de/
http://digital.deutsches-museum.de/item/NL-207-0961/
http://digital.deutsches-museum.de/item/NL-207-0961/
http://digital.deutsches-museum.de/item/NL-207-0961/
http://digital.deutsches-museum.de/item/NL-207-0961/
http://digital.deutsches-museum.de/item/NL-207-0961/
http://digital.deutsches-museum.de/item/NL-207-0961/
http://digital.deutsches-museum.de/item/NL-207-0961/
http://digital.deutsches-museum.de/item/NL-207-0961/
http://digital.deutsches-museum.de/item/NL-207-0961/
http://digital.deutsches-museum.de/item/NL-207-0999/
http://digital.deutsches-museum.de/item/NL-207-0999/
http://digital.deutsches-museum.de/item/NL-207-0999/
http://digital.deutsches-museum.de/item/NL-207-0999/
http://digital.deutsches-museum.de/item/NL-207-0999/
http://digital.deutsches-museum.de/item/NL-207-0999/
http://digital.deutsches-museum.de/item/NL-207-0999/
http://digital.deutsches-museum.de/item/NL-207-0999/
http://digital.deutsches-museum.de/item/NL-207-0999/

References 79

Zuse, K. 1955. Patentschrift nr. 924107: Aus mechanischen Schaltgliedern aufgebautes Speicherw-
erk (für Zuse). Deutsches Museum Digital. http://digital.deutsches-museum.de/item/NL-207-
1001/

Zuse, K. 1970. Der Computer – Mein Lebenswerk. Landsberg: Verlag Moderne Industrie.

http://digital.deutsches-museum.de/item/NL-207-1001/
http://digital.deutsches-museum.de/item/NL-207-1001/
http://digital.deutsches-museum.de/item/NL-207-1001/
http://digital.deutsches-museum.de/item/NL-207-1001/
http://digital.deutsches-museum.de/item/NL-207-1001/
http://digital.deutsches-museum.de/item/NL-207-1001/
http://digital.deutsches-museum.de/item/NL-207-1001/
http://digital.deutsches-museum.de/item/NL-207-1001/
http://digital.deutsches-museum.de/item/NL-207-1001/

Chapter 4
The Z2 and the Cipher Machine

The Z2 was a prototype that proved that telephone relays could be used to substitute
the mechanical relays of the Z1. The Z2 used the mechanical memory of the Z1.
The processor operated with 16-bit integers and could compute only additions,
subtractions, and multiplications. The processor was built with just 200 telephone
relays.

4.1 Architecture of the Z2

Finishing the mechanical Z1 was important to Konrad Zuse because this machine
proved that the overall logical design of his computer was sound. However, the Z1
was not reliable enough; its mechanical components frequently jammed. Therefore,
in 1939, Zuse decided to build a small computer prototype using telephone relays,
as a proof of concept, before migrating the complete calculating machine to relay
technology. However, he was drafted to the front in 1939 but was discharged in 1940
so that he could continue working for the Henschel company. The Z2 was built with
funding from Kurt Pannke, a manufacturer of specialized calculating devices. Zuse
built the prototype in the free time that his daily work allowed, during the evenings
and weekends.

According to Konrad Zuse, the Z2 was shown in 1940 to Prof. Alwin Teichmann
from the German Aircraft Research Unit (DVL). The successful demo convinced
the DVL to provide partial funding for the next machine, the Z3, which Zuse had
already started to build.

Friends of Zuse reported after the war that they witnessed the Z2 computing 3. ×3
determinants in 1940. The machine did not use floating point, as did the Z1. It was a
fixed-point machine that could handle 16-bit integers. The complete processor had
only 200 relays.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Rojas, Konrad Zuse’s Early Computers, History of Computing,
https://doi.org/10.1007/978-3-031-39876-6_4

81

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39876-6protect T1	extunderscore 4&domain=pdf
https://doi.org/10.1007/978-3-031-39876-6_4
https://doi.org/10.1007/978-3-031-39876-6_4
https://doi.org/10.1007/978-3-031-39876-6_4
https://doi.org/10.1007/978-3-031-39876-6_4
https://doi.org/10.1007/978-3-031-39876-6_4
https://doi.org/10.1007/978-3-031-39876-6_4
https://doi.org/10.1007/978-3-031-39876-6_4
https://doi.org/10.1007/978-3-031-39876-6_4
https://doi.org/10.1007/978-3-031-39876-6_4
https://doi.org/10.1007/978-3-031-39876-6_4
https://doi.org/10.1007/978-3-031-39876-6_4

82 4 The Z2 and the Cipher Machine

Fig. 4.1 Sketch of the relay computer Z2. The processor relays and the input-output console are
visible in the background (parts labeled T and R). The punched tape reader and the mechanical
memory (labeled with C) are visible in the foreground (http://zuse.zib.de)

There is no written record from Zuse about the full range of capabilities of
the machine, only the sketch shown in Fig. 4.1, which nevertheless shows some
important facts about the machine. First, the output was displayed in binary, that is,
there was no binary-decimal conversion in the machine. The input was also probably
binary, through a simple keyboard. The memory and punched tape reader were taken
from the Z1. The small total number of relays suggests to me that the machine could
only add, subtract, and multiply integers. For the division algorithm, the processor
would have required more than the 200 relays allocated to the processor. There are
some cylinders visible below the relays for the processor. These are probably rotary
dials like those used for sequencing the microinstructions of the Z3.

The Z2 was a minimal computer, and it shows, in retrospect, that the necessary
technology for building binary computers was available in the early 20th century.
What was lacking was a sound architectural design, which was provided by Zuse.

Before the Z2 was finished in 1940, there was another minimal machine, which
was never built. It was the proposal for a cryptographic machine that Zuse authored,
trying to be discharged from the front so that he could continue working on
computing machines.

http://zuse.zib.de
http://zuse.zib.de
http://zuse.zib.de
http://zuse.zib.de

4.2 Konrad Zuse’s Proposal for a Cipher Machine 83

4.2 Konrad Zuse’s Proposal for a Cipher Machine

Konrad Zuse wrote a proposal for a cipher machine during the winter of 1939/1940.
The document was prepared at the Eastern Front during World War II and reached
the German military authorities, possibly with the help of Kurt Pannke. Zuse’s
unpublished manuscript was found in his estate. Zuse’s proposal was rejected by
the military and the software-based cipher machine described in the letter never
materialized.

4.2.1 The Context of the Invention

It had been known for years that Konrad Zuse designed a cipher machine around
1939/1940 (one page of a handwritten description is reproduced in Zuse 1970),
but until recently no further details had been available. This section provides an
overview of Zuse’s idea, the context of the invention, and its eventual rejection by
the German military.

Konrad Zuse was called to the Eastern Front in August 1939. He was 29 years
old and World War II proved to be a critical interruption of his work on computer
machinery. He had started to tinker with mechanical binary elements as early as
1934, so that in February 1936, he was confident that he could build a complete
calculating machine composed of such mechanical components. He built the Z1, a
mechanical programmable calculator, between 1936 and 1938 in his parent’s living
room.

Zuse was forced to adapt his creation to the needs of the military. He had to
“sell” his idea to be sent back to Berlin from the front so he could continue working
on his machines. Previously, in 1937, Zuse had made contact with Kurt Pannke,
who partially financed the construction of the Z1 (Zuse 1970). Pannke had worked
in the past on machines for artillery calculations and even had a patent for such
a device (Pannke 1927). It was probably Pannke’s idea to modify the Z1 so that
letters were exchanged between him and Zuse, discussing the possible adaptation of
the machine to cryptography (Zuse 1940). The result was the document we present
here, where the young soldier Konrad Zuse proposes to the military to build a binary
programmable mechanical device for cryptography (Zuse 1939/1940). Potentially,
any encoding algorithm could be implemented in the machine. In the document,
Zuse gives an example of one possible encoding, making clear that the machine
itself was not constrained by this choice.

As is evident from Zuse’s pitch, he was not an expert cryptographer. He might
have learned the basics before submitting his letter. It was written at the front (where
Zuse was not involved in direct combat) and mailed to Berlin. A second proposal,
with a more complex method for mixing bits, was prepared later by Zuse, and was
also sent to the authorities. That second “algorithm” is not available in complete
form, but the handwritten first page was reproduced by Zuse in his autobiography

84 4 The Z2 and the Cipher Machine

(Zuse 1970). Nevertheless, the core of Zuse’s argument was that, in principle, the
concrete ciphering algorithm is just a matter of choice, once a computing machine
is available that can carry out any desired computation. Random addressing of a
table of random bits was the main new computational feature that Zuse could offer
to cryptographers.

4.2.2 Konrad Zuse’s Letter

The following is a translation of Konrad Zuse’s proposal for a cipher machine
(Zuse 1939/1940). The original letter (in German) is kept at Deutsches Museum
in Munich, being part of the documents provided by Zuse’s family to the museum
after his death. The letter was typed. We find the date 1939/1940 handwritten on the
first page (probably by Zuse).

Dipl. Ing. Konrad Zuse
Berlin SW 61, Methfesselstr. 10
Soldier
Field Postal Number 24 976
Post Office Berlin
Cipher Machine

My work on the machine I invented for technical computations has led to the
development of mechanical switches and also of a mechanical storage composed
of such elements. The disposition of the parts can be redesigned so that the
machine can be adapted for cryptographic use. The advantage is, firstly, the spatial
concentration and simplicity of the construction, secondly, the cipher can be built
using functional laws as complex as desired. This is because the circuits can be
modified with ease, as can be done with circuits made out of relays. In the following,
we illustrate an encoding method that can be executed completely automatically by
mechanical elements. The construction is independent of this specific method.

The text to be encoded consists of a sequence of groups of five binary symbols.
Each combination (a letter) must be substituted by another one. The result R (the
letter to be sent) is a function of the text T (the letters in the given text) and of an
encoding combination S that we assume to consist of five binary symbols.

The function R=F(T,S) must be invertible in the function S=F(T,R), to make
decoding possible. Let us consider two encoding functions as an example. The
groups of five symbols are binary numbers with five digits each.

(1) The inversion method.
The digit . ti of T is inverted when the digit . si of S is one. Example:

.T = 01101

S = 11011

R = 10110

4.2 Konrad Zuse’s Proposal for a Cipher Machine 85

(2) The addition method R = S + T.
If R becomes a binary number of six digits, we suppress the sixth digit. Example:

. T = 01101

S = 11011

101000

R = 01000

Both solutions are straightforward to implement. The binary adder has been tested in
a prototype. The machine can also change the encoding combination S continuously,
following certain rules and maintaining the calculation laws determined by the
initial configuration. We can store in the machine several initial configurations, for
example seven, of five binary digits. They produce a binary number of 35 digits,
from which we only need to use 32 positions. Using a decoder, we can select from
the binary sequence the n-th and as many binary digits as needed for the key S.
From S and T we determine R. R is equal to the next N.

key N N binary random

0 00000 0

1 00001 0

2 00010 1

3 00011 1

4 00100 1

5 00101 0

6 00110 1

7 00111 0

8 01000 1

9 01001 0

10 01010 1

11 01011 1

12 .· · · 0

13 .· · · 1

14 1

15 . · · · 1

16 0

17 1

18 1

19 1

20 0

21 0

22 1

23 0

24 0

25 0

26 1

27 1

28 0

29 0

30 0

31 1

86 4 The Z2 and the Cipher Machine

Start number: 25 31 1

T N S T+N R

1 00010 2 25 01000 12 14 14 01110

2 00110 6 14 11011 27 33 1 00001

3 00110 6 1 01110 14 20 20 10100

4 01000 8 20 00100 4 12 12 01100

5 01001 9 12 01110 14 23 23 10111

6 11010 26 23 00011 3 29 29 11101

7 00110 6 29 00100 4 10 10 01010

8 00000 0 10 11011 27 27 27 11011

9 11110 30 27 10001 47 47 15 01110

The process can be inverted easily to decode.

4.2.3 Discussion

There are several interesting aspects in Zuse’s letter. First, he proposes to use a
purely binary approach. Machines such as the Enigma and later the Lorenz SZ40
were mechanical devices based on rotors and some wiring. They were provided to
the users as black boxes. The user could only adjust the start position of the rotors
but not completely reprogram the machine. In Zuse’s proposal, the pseudorandom
stream of binary digits is provided in advance (it can be generated by any means),
can be kept in memory, and the “scrambling,” that is, the selection of the bits
needed for a substitution, could be done with any good algorithm. Zuse does not
compare his machine to those already known, simply because he was unaware of
the cryptographic methods they implemented.

Zuse’s method consists in taking 35 random bits and then generating a random
pointer to any position between 0 and 31. The five bits starting at the pointer would
be taken and used for the encoding (the last position, 31, can use the additional bits
at positions 32 to 34). A random pointer to a random position would seem to be
a good way of scrambling text. However, the reuse of the random bits would be
significant in an encoded text of any useful length, so that the cipher could have
been easily broken.

For the combination of a letter with five random bits, Zuse proposes to use XOR
(the “inversion method”) or addition. The expressions R=F(T,S) and S=F(T,R) are
only valid for the XOR case (since S=T XOR (T XOR S)). For the addition case,
subtraction would be needed to recover S. To recover the plain text from the cipher,
the key and the starting position are needed. Given S and R, T can be recovered for
the first line of the table in Zuse’s letter (.14 − 12 = 2). R provides the next pointer

References 87

into the key, for recovering five bits of the key, and for proceeding to the next line
of decoding (.33 − 27 = 6).

Zuse’s letter has only historical value today. It shows that very early during the
development of the computer, he was aware of the full range of applications that a
fast-calculating machine could have.

References

Pannke, K. 1927. Rechenvorrichtung. German Patent Office, Patent 447780
Zuse, K. 1939/1940. Chiffriermaschine. Zuse Archive at Deutsches Museum, images 202_4-01,

202_4-02, 202_4-03
Zuse, K. 1940. Draft of a letter to Kurt Pannke. Zuse Archive at Deutsches Museum
Zuse, K. 1970. Der Computer – Mein Lebenswerk. Landsberg: Verlag Moderne Industrie.

Chapter 5
The Architecture of the Z3

This chapter reviews the first detailed description (published in 1997) of the
architecture of the Z1 and Z3 computing machines designed by Konrad Zuse in
Berlin between 1936 and 1941. The necessary information was obtained from a
careful evaluation of the patent application filed by Zuse in 1941. Additional insight
was gained from a software simulation of the machine’s logic.1

The Z1 was constructed using purely mechanical components, while the Z3 used
electromagnetic relays. Despite these differences, both machines shared a common
logical structure and utilized the same programming architecture. We argue that both
the Z1 and the Z3 possessed features comparable to those of modern computers.
They consisted of separate memory and processor units, and the processor was
capable of handling floating-point numbers, performing the four basic arithmetic
operations, and computing square roots. Programs were stored on punched tape and
read sequentially.

5.1 Early Computing Machines

Konrad Zuse’s Z1, a programmable automaton built between 1936 and 1938, is one
of the “first computers” in the world. Zuse decided to build his first experimental
calculating machine around two main ideas: (a) the machine would work with binary
numbers; (b) the computing and control unit would be separated from the storage.
In 1936, the memory2 of the planned machine was completed. The processor of
the Z1 was completed a few months after the storage unit, using the same kind

1 This chapter is based on Rojas (1997). The complete set of numerical algorithms for the Z3 was
published in Rojas (1998).
2 Zuse called it the “Speicherwerk” (storage mechanism). The term “Speicher” is still used in
German instead of the anthropomorphic term “memory” introduced by John von Neumann.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Rojas, Konrad Zuse’s Early Computers, History of Computing,
https://doi.org/10.1007/978-3-031-39876-6_5

89

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39876-6protect T1	extunderscore 5&domain=pdf
https://doi.org/10.1007/978-3-031-39876-6_5
https://doi.org/10.1007/978-3-031-39876-6_5
https://doi.org/10.1007/978-3-031-39876-6_5
https://doi.org/10.1007/978-3-031-39876-6_5
https://doi.org/10.1007/978-3-031-39876-6_5
https://doi.org/10.1007/978-3-031-39876-6_5
https://doi.org/10.1007/978-3-031-39876-6_5
https://doi.org/10.1007/978-3-031-39876-6_5
https://doi.org/10.1007/978-3-031-39876-6_5
https://doi.org/10.1007/978-3-031-39876-6_5
https://doi.org/10.1007/978-3-031-39876-6_5

90 5 The Architecture of the Z3

Fig. 5.1 Reconstruction of the Z3 in Deutsches Museum in Munich (Image: Konrad Zuse Internet
Archive, http://zuse.zib.de)

of technology. Despite its unreliability, the Z1 demonstrated the soundness of its
architectural design and motivated Zuse to explore alternative technologies. As an
interim step, Zuse constructed the Z2, a simpler model that used a hybrid approach,
combining a relay-based processor with a mechanical memory. Subsequently, Zuse
embarked on the construction of the Z3, a machine that relied solely on relays,
while retaining the same logical design as the Z1. It was completed and operational
in 1941, 4 years before the ENIAC (Fig. 5.1).

The Z3 was documented by Zuse in his patent application Z391 of 1941, which
is rather difficult to decipher due to the non-standard notation and terminology used
(Zuse 1941). Czauderna’s book about the Z3 is a good source for understanding
the historical context of Zuse’s inventions but does not describe the Z3 in detail
(Czauderna 1979). The main architectural difference between the Z1 and Z3 is
the absence of the square root operation in the Z1. Additionally, there are minor
differences in the number of bits used for arithmetic operations within the processor.
Specifically, the Z1 used one bit less for the mantissa of floating-point numbers.
Furthermore, differences exist in the number of cycles required for each instruction
and the implementation of numerical exceptions.

http://zuse.zib.de
http://zuse.zib.de
http://zuse.zib.de
http://zuse.zib.de

5.2 Architectural Overview of the Z3 91

5.2 Architectural Overview of the Z3

This section provides a concise summary of the most relevant architectural features
of the Z3. We will start with an overview of the architecture and gradually move
into more detailed explanations. For clarity and consistency, the Z3 is described in
the present tense.

5.2.1 Block Structure

The Z3 is a floating-point machine. While other early computing automata such
as the Mark I, the ABC, and the ENIAC worked with fixed-point numbers, Zuse
decided early on to adopt what he called the “semi-logarithmic” notation, which
corresponds to the modern floating-point representation.

Figure 5.2 shows an overview of the main building blocks of the Z3. A key aspect
is the separation between the processor and memory. The Z3 consists of a binary
memory unit (capable of storing 64 floating-point numbers), a binary floating-
point processor, a control unit, and input/output devices. The memory and the
arithmetic units are connected by a data bus that carries the exponent and mantissa
of the floating-point representation. The control unit contains the microsequencers
required for each instruction. Control lines going from the control unit to the
processor, the memory, and the I/O devices enforce proper synchronization of all
units. The tape reader provides the opcode of each instruction and the addresses for

control
unit

numerical
keyboard

numerical
display

data bus
(exponent)

data bus
(significand)

arithmetical unit

exponent
registers
and ALU

significand
registers
and ALU

memory

(64 words)

punched tape

tape
 reader

address
bus

control
lines

data bus

Fig. 5.2 The building blocks of the Z3

92 5 The Architecture of the Z3

7 bits 14 bits

b–1 b–2 b–3 b–14....

significand

a0a1a6
+
–

exponentsign

Fig. 5.3 The floating-point representation in memory

memory accesses. The I/O devices are connected to the computing unit via a data
bus.

5.2.2 Floating-Point Representation

Figure 5.3 shows the representation used in the memory of the Z3. The first bit is
used to store the sign of the number, the next 7 bits are used for the exponent, and the
last 14 bits for the mantissa (only the 14 places to the right of the binary point). The
bits of the exponent are called part “A” of the number and are denoted by .a6, . . . , a0.
The bits of the mantissa are called part “B” of the number and are denoted by
.b0, b−1, . . . , b−14. The exponent is encoded as a two’s complement number. The
range of possible values runs therefore from .−64 to 63. The mantissa is stored in
normalized form,3 that is, the first digit before the binary point (. b0) must always be a
1. This digit does not need to be stored (and therefore does not appear in Fig. 5.3) so
that the effective range of the numbers in the memory unit corresponds to a mantissa
(significand) of 15 bits. However, there is a problem with the number zero, which
cannot be expressed with a normalized mantissa. The Z3 uses the convention that
any FP number with an exponent of .−64 is considered equal to zero. Any number
with an exponent of 63 is considered infinitely large. Operations involving zero and
infinity are treated as exceptions and special hardware monitors the numbers loaded
into the processor in order to set the exception flags (see Sect. 5.4).

With this convention, the smallest number representable in the memory of the
Z3 is .2−63 = 1.08 × 10−19 and the largest is a little less than . 263. The arguments
for computations can be entered as decimal numbers on the keyboard of the Z3
(four digits). The exponent of the decimal representation is entered by pressing
one of the keys labeled .−8,−7, . . . , 7, 8. The original Z3 could only accept input
between .1 × 10−8 and .9999 × 108. The reconstruction of the Z3 built by Zuse
for Deutsches Museum in Munich provides enough keys for larger exponents.
With this arrangement, the numerical capacity of the machine corresponds to the
acceptable input. However, the Z3 does not print the numerical results produced by

3 Donald Knuth attributes the invention of normalized floating-point numbers to Zuse (Knuth
1981).

5.2 Architectural Overview of the Z3 93

the program. A result is displayed on an array of lamps that represent the digits from
0 to 9 (for each decimal place). The largest number that can be displayed is 19999.
The smallest is 00001. The largest exponent that can be displayed is . +8, and the
smallest . −8.

5.2.3 Instruction Set

The Z3’s program is stored on punched tape. Each instruction is encoded using 8
bits for each row of the tape. The instruction set of the Z3 consists of the nine
instructions shown in Table 5.1. There are three types of instruction: I/O, memory,
and arithmetic operators. The opcode has a variable length of 2 or 5 bits. Memory
operations encode the address of a word in the lower six bits, that is, the addressing
space has a maximum size of 64 words, as we mentioned before.

The instructions on the punched tape can be combined in any order. The
instructions Lu and Ld (read from the keyboard, display result) stop the machine
so that the operator has enough time to enter a number or write down a result. The
machine is then restarted and continues processing the program.

The instruction most conspicuously missing from the instruction set of the
Z3 is conditional branching. Loops can be implemented by the simple expedient
of joining the two ends of the punched tape, but there is no way to implement
conditional sequences of instructions. Therefore, the Z3 is not a universal computer
in the sense of Turing.

5.2.4 Number of Cycles

The Z3 is a clocked machine. Each cycle is divided into five “stages” called I, II, III,
IV, and V. The instruction in the punched tape is decoded in stage I of a cycle. The
two basic arithmetic operations of the machine are addition and subtraction of the

Table 5.1 Instruction set and
opcodes of the Z3

Type Instruction Description Opcode

I/O Lu Read keyboard 01 110000

Ld Display result 01 111000

Memory Pr z Load address z . 11 z6z5z4z3z2z1

Ps z Store address z . 10 z6z5z4z3z2z1

Arithmetic Lm Multiplication 01 001000

Li Division 01 010000

Lw Square root 01 011000

Ls.1 Addition 01 100000

Ls.2 Subtraction 01 101000

94 5 The Architecture of the Z3

exponents and mantissas. These operations can be executed in the first three stages
of each cycle. Stages IV and V are used to prepare arguments for the next operation
or to write back results.

The instructions implemented in the Z3 require the following number of cycles:

Multiplication: 16 cycles
Division: 18 cycles
Square root: 20 cycles
Addition: 3 cycles
Subtraction: 4 or 5 cycles, depending on the result
Read keyboard: 9 to 41 cycles, depending on the exponent
Display output: 9 to 41 cycles, depending on the exponent
Load from memory: 1 cycle
Store to memory: 0 or 1 cycle

According to Zuse, the time required for a multiplication was 3 seconds.
Considering that a multiplication operation takes 16 cycles, we can estimate that
the operating frequency of the Z3 was 16/3 . ≈ 5.33Hz.4

The number of cycles needed for the read and display instructions is variable
because it depends on the exponent of the argument. Since the input must be
converted from decimal to binary representation, the number of multiplications
required with a factor of 10 or 0.1 is dictated by the decimal exponent (see Sect. 5.4).

Addition and subtraction require more than one cycle because in the case of
floating-point numbers, care must be taken to set the size of the exponent of
both arguments to the same value. This requires some additional comparisons and
shifting.

A number can be stored in memory in zero cycles if the result of the last
arithmetic operation can be redirected to the desired memory address. In this case,
the cycle required for the store instruction overlaps with the last cycle of the
arithmetic operation.

5.2.5 Programming Model

It is very important to describe the programming model of the Z3, that is, the part of
the machine visible to the programmer. From the point of view of the software, the
Z3 consists of 64 memory words that can be loaded into two floating-point registers,
which we will simply call R1 and R2. These two registers contain the two arguments
for arithmetic operations (the square root operation uses only R1). The programmer
can write any desired sequence of instructions but must take into account the state
of the machine’s registers.

4 It is a curious fact of life that the gate-level animated simulation of the Z3 implemented by my
students in 1994 for the first browsers also required about 3 seconds for a multiplication!

5.2 Architectural Overview of the Z3 95

The important thing to remember is that the first load operation in a program
(Pr z) transfers the contents of address z to R1. A second load operation transfers
a word from memory to R2. A read keyboard instruction loads the numerical input
into register R1 and destroys register R2.

Arithmetic operations do not specify their arguments in the opcode. Their
implicit semantics is the following:

Multiplication: R1:=R1×R2
Division: R1:=R1/R2
Addition: R1:=R1+R2
Subtraction: R1:=R1−R2
Square root: R1:=sqrt(R1)

In the Z3, after executing an arithmetic instruction, register R2 is set to zero, and the
result of the operation is stored in register R1. Subsequent load operations refer to
R2. The store and display instructions always refer to register R1, which contains the
result of the previous arithmetic operation. Following a store or display operation,
R1 is reset to zero. The next load operation then refers to R1.

An example is better than many additional remarks to illustrate the programming
model of the Z3. Suppose we want to compute a polynomial using Horn’s method:

. x(a2 + x(a3 + xa4))) + a1.

Suppose we also want to store the constants .a4, a3, a2, a1 in the addresses 4, 3, 2,
and 1 of the memory unit. The value x is stored at address 5. The program that
performs the desired computation is the following:

Pr 4 load a4 in R1
Pr 5 load x in R2
Lm multiply R1 and R2, result in R1
Pr 3 load a3 in R2
Ls1 add R1 and R2, result in R1
Pr 5 load x in R2
Lm multiply R1 and R2, result in R1
Pr 2 load a2 in R2
Ls1 add R1 and R2, result in R1
Pr 5 load x in R2
Lm multiply R1 and R2, result in R1
Pr 1 load a1 in R2
Ls1 add R1 and R2, result in R1
Ld display result

After the last instruction has been executed, the processor is reset to its initial
state. A new program sequence can be started.

96 5 The Architecture of the Z3

5.3 Block Diagram of the Z3

In this section, we take a closer look at the structure of the Z3 and describe its
main building blocks in more detail. The main issue is how to enforce the correct
synchronization of the available components.

5.3.1 The Processor

Figure 5.4 shows a simplified representation of the arithmetic unit of the Z3. There
are two parts: the left side is used for operations with the exponents of the floating-
point numbers, and the right side is used for operations with the mantissas. Af and
Bf are registers used to store the exponent and mantissa of the first register, from the
programmer’s point of view. We will refer to R1 as the register pair . <Af,Bf. >. The
register pair . <Ab,Bb. > stores the exponent and mantissa of R2. The pair . <Aa,Ba. >
contains the exponent and the mantissa of a third temporal floating-point register
invisible to the programmer. The two ALUs A and B are used to add or subtract
exponents and mantissas respectively. The result of the operation in the exponent
part is placed in Ae. In the mantissa part, the result of the operation is put into Be.
In part B, a multiplexer allows the selection of Ba or the output of the ALU as the

EdEc
Ea Eb

Ff

FdFbFa

multiplexer

A B

Ba Bb

Af

Bf

Be

Ae

As

Aa Ab

shift (–2..1) shift (–16..15)

Bs 1

Bt

FcEf

1

Part A: operations with the exponents Part B: operations with the significands

register R1

register R2

floating-point

floating-point

Fig. 5.4 The registers and datapath

5.3 Block Diagram of the Z3 97

result of the operation. The multiplexer is controlled by a relay Bt (if Bt=0 then Be
is set equal to Ba).

The small boxes labeled Ea, Eb, Ec, Ed, Ef, Fa, Fb, Fc, Fd, and Ff are switches
that open or close the data bus. If the contents of register Af are to be transferred to
Aa, for example, the box of relays Ea is set to 1 and the result is Aa:=Af. As can be
seen from the diagram, the contents of Af can be transferred to Aa or Ab, while the
contents of Ae can be transferred to any of Aa, Ab, or Af, according to the states
of the switches. The structure of part B of the arithmetic unit is very similar, but in
addition to the multiplexer controlled by the relay Bt, there is also a shifter between
Bf and Ba and a shifter between Bf and Bb. The first shifter can shift the mantissa
up to two positions to the right and one position to the left. This is equivalent to a
division of Bf by 4 or to multiplication by the constant 2. The second shifter can
shift the mantissa in Af from 1 to 16 positions to the left and from 1 to 15 positions
to the right. These shifts are necessary for addition and subtraction of floating-point
numbers. Multiplication and division with powers of 2 can therefore be performed
when the operands are fetched for the next arithmetic operation and thus do not
consume any time.

The number of bits used in the registers is the following:

Af 7 bits Bf 17 bits
Aa 7 Ba 19
Ab 7 Bb 18
Ae 8 Be 18

As can be seen from this list, Ae uses an extra bit to handle the addition of the
exponents of the arguments. Part B of the processor uses two additional bits for the
mantissas (.b−15, b−16) and makes explicit . b0, which is not stored in memory. The
extra bits at positions .−15 and .−16 are included to increase the precision of the
computations. The total number of bits required to store the result of an arithmetic
operation in Bf is therefore 17 bits. The registers Ba and Bb need more extra bits
(. ba2, . ba1, and . bb1) to store intermediate results of some of the numerical algorithms.
The square root algorithm, in particular, can result in partial computations in Ba that
require three bits to the left of the binary point.

The basic primitive operation of the datapath is the addition or subtraction of
exponents or mantissas. When the relays As or Bs are set, the negation of the second
argument (Ab or Bb) is fed into the ALU. Thus, if the As relay is set to 1, the ALU
in part A subtracts its arguments, otherwise, they are added. The same is true for
part B and the relay Bs. The constant 1 is needed to build the two’s complement of
a number.

Suppose that two numbers with the same exponent are to be added. The first
exponent is stored in Af and the second in Ab. Since they are equal, no operation
has to be performed on this side of the machine. In part B, the mantissa of the first
number is stored in Bf and the mantissa of the second in Bb. The first step is to
load Bf into Ba by setting the relay box Fa to 1. The addition is performed next:
the relay Bt is set to zero, and the result Ba+Bb is assigned to Be. The relay box
Ff is now set to 1, and the result is stored in Bf. As we can see, the information

98 5 The Architecture of the Z3

can move between registers and flow through the datapath. The computer architect
must determine the correct sequence of activations of the relay boxes in order to
get the desired operation. This is done in the Z3 using a technique very similar to
microprogramming.

5.3.2 The Control Unit

Figure 5.5 shows a more detailed diagram of the control unit and the I/O panels. The
circuit Pb decodes the opcode of the instruction read from the punched tape. If it is
a memory instruction, circuit Pb sets the address bus to the value of the lower six
bits of the opcode. The control unit determines the correct microsequencing of the
instructions. There are special circuits for each of the operations in the instruction
set.

Circuit Z represents the panel of buttons used to enter a decimal number into the
machine. Only one key in each of the four columns can be activated. The exponent
is set by pressing one of the keys labeled . −8 to 8 in circuit K. The output display
is very similar to the input panel, but here lamps illuminate the appropriate decimal
digits, the exponent of the number (circuit Q), as well as its sign. Note that there is
a fifth digit for the output (which can only be 1 or 0).

Once a decimal number has been set, a data bus transmits the digits to register Ba
and a complex series of operations is started. The decimal input must be transformed
into a binary number. This requires a chain of multiplications, which is longer
depending on the absolute magnitude of the exponent. If the exponent is zero, the
whole transformation takes 9 cycles, but if the exponent is 8, the operation requires
.9 + 4 × 8 = 41 cycles.

U
D
M
J
W
S
V

read
display
multiplication
division
square root
add/sub
sign

control unit

Pa opcode

Pb address

punched tape

•• ••
• • ••
•• •

Z (keyboard) R (result)

QK

9 9 9 9
8 8 8 8

0 0 0 0

9 9 9 9
8 8 8 8

0 0 0 0
1 1 1 11

• • •

1 1 1 1

• • •+
–

+
–

–81 0 –1• • • • • •8

exponent of input

–81 0 –1• • • • • •8

exponent of result

address bus data bus data bus

Fig. 5.5 The control unit and I/O panels

5.3 Block Diagram of the Z3 99

5.3.3 Microcontrol of the Z3

The heart of the control unit are its microsequencers. Before we describe how they
work, it is necessary to take a closer look at the chaining of arithmetic instructions
in the Z3. Figure 5.6 shows the main idea. Each cycle of the Z3 is divided into
five stages. Stages IV and V are used to move information in the machine. During
stages I, II, and III an addition/subtraction is computed in part A and another in
part B. We call this the “execute” phase of an instruction. A typical instruction
fetches its arguments, executes, and writes back the result. Zuse took great care
to save execution time by overlapping the fetch phase of the next instruction with
the write-back phase of the current one. We can think of an execution cycle as
consisting of just two phases, as shown in Fig. 5.6 where the first two cycles of a
series of instructions have been labeled. We have adopted this convention in the
tabular diagrams of the numerical algorithms discussed later on.

The microsequencing is done by special control wheels. There is one for the
multiplication algorithm, another to control the division, and another for the square
root instruction. The moving arm shown in Fig. 5.7 starts to move clockwise as soon
as the control unit decodes the corresponding instruction. In each cycle, the arm

sgrahctef kcabetirwetucexe

sgrahctef kcabetirwetucexe

sgrahctef kcabetirwetucexe

VVIVVI IIIIII

first cycle

second cycle

Fig. 5.6 The execution pipeline of the Z3

Ea
Ec, Fc

Bl, Bs

etc.

1
2

3

4

5

Fig. 5.7 Control wheels for microsequencing

100 5 The Architecture of the Z3

moves from one position to the next. The arm conducts electricity and activates
the circuits it comes into contact with. In the example shown in the figure, the
moving arm sets the relay box Ea to 1 in the first cycle. This leads to the transfer
of the contents of register Af into Aa. In the next cycle, the relay boxes Ec and
Fc are activated. In this way, the results of the operations in parts A and B are
written back to the registers Aa and Ba, respectively. As can be seen, such control
wheels provide a convenient platform for modifying the exact sequence of events
during an operation. They correspond to the microsequencers used today in modern
microprocessors. I stop short of calling them a form of microprogramming, because
in this case the microsequence is hardwired, but it is obvious that microsequencing
and microprogramming are closely related.

Extensive use of microsequencing allowed Zuse to simplify the Z3. Once the
basic circuits had been laid out, it was just a matter of refining the control until
optimal sequences of events could be found. There are a lot of details that need
to be kept in mind by the engineer designing the “microprogram.” Otherwise,
short circuits could destroy the hardware. The Z1 with its mechanical design was
even more sensitive in this respect than the Z3. Even after it was finished, there
were sequences of instructions that the programmer had to avoid in order not
to damage the hardware. One of those sequences was inadvertently tried at the
German Museum of Technology in Berlin in 1994, causing minor damage to the
reconstructed Z1.

5.3.4 The Adders

An important feature of the Z3 is the design of the adders, which compute additions
and subtractions using a method called carry look-ahead. When binary addition
is implemented in a straightforward way, carries have to be passed from one bit
position to the next. In the case of the mantissa, we would need 16 cycles just for
the transmission of the carry bits.

The adders designed by Zuse are much faster than this—they perform an addition
or subtraction in stages I, II, and III of a single cycle. Subtraction is computed by
complementing the second argument and adding an extra 1 at the lowest bit position.

Consider the addition of the registers Ba and Bb. First of all, a partial result Bc
is computed, which is the bitwise XOR of both registers, i.e., .bci = bai XOR bbi .
We will refer to bit i-th of register Bb by . bbi or Bb[i], whichever form seems more
convenient. The same notation will be used in the case of other registers. A second
partial result is the bitwise AND operation applied to both registers, i.e., . bhi =
bai AND bbi . This last operation locates the bit positions where a carry is needed.
The intermediate result Bd is computed by using the circuit shown in Fig. 5.8. The
input to the circuit consists of the bits .bh1, . . . , bh−16 computed previously. When a
bit is 1, the corresponding line carries a current. Otherwise, the line is disconnected
from the power source (three-state). The rest position of the relays . bc1, . . . , bc−16
is the one shown in the figure. If bit . bci is equal to 1 the corresponding relay is

5.4 Numerical Algorithms 101

bh 0 bh –1 bh –16bh 1

bc 0

bd 0

bc –15

bd -15

bc –16

bd 1 bd -16

...
bc 1

Fig. 5.8 Circuit for carry look-ahead

closed. The final result is .bei = bdi XOR bci . Note that the use of relays simplifies
the propagation of the carries up to the last required bit position. Since all relays are
activated simultaneously, the carry is not delayed in going from one bit position to
the next.

5.4 Numerical Algorithms

In this section, we describe the floating-point algorithms used by the Z3. They are,
without exception, the same as those normally used in small sequential floating-
point processors (Koren 1993). The description of the algorithms has been verified
by Julius Range using a simulation of the Z3 (Range 2016).

5.4.1 Floating-Point Exceptions

The problem with floating-point notation is that special conventions must be used to
deal with the number zero. The Z3 solves this problem and handles other exceptions
(overflow, underflow) by monitoring the value of the exponent after every arithmetic
operation or a load from memory. A special circuit looks at the state of the bus Ae
and catches exceptions. Any number with exponent .−64 is flagged as zero: a relay
denoted Nn. 1 is set to 1 if the number is stored in the register pair . <Af,Bf. >. If the
number is stored in the register pair . <Ab,Bb. >, the relay Nn. 2 is set to 1. In this
way, we always know if one or both arguments of an arithmetic operation are zero.
Something similar is done for every exponent of value 63 (an infinite number, by
convention). In this case, the relays Ni. 1 or Ni. 2 are set to 1 depending on the register
pair where the number is stored.

Operations involving “exceptional” numbers (zero or infinity) are performed as
usual, but the result is overwritten by the snooping circuit. Assume, for example,
that a multiplication is computed and the first argument is zero (Nn. 1 is set to 1). The
computation proceeds as usual, but in each cycle the snooping circuit produces the
result .−64 at the output of the adder of part A. It does not matter what operations
are performed with the mantissas because the exponent of the result is set to .−64

102 5 The Architecture of the Z3

and therefore the final result is zero. Division by infinity can be handled similarly.
The Z3 can detect undefined operations like . 0/0, .∞ − ∞, .∞/∞ and .0 × ∞. In all
these cases the corresponding exception lamp will light up on the output panel and
the machine will stop. The Z3 always produces the correct result when one of the
arguments is zero or . ∞ and the other a number within bounds.5

An additional circuit looks at the exponent of the result at the output of the
exponents’ adder. If the exponent is greater than or equal to 63, an overflow has
occurred, and the result must be set to . ∞. If the exponent is less than .−63, an
underflow has occurred, and the result must be set to 0. To do this, the corresponding
relay (Nn. 1 or Ni. 1) is set to 1.

Zuse managed to implement exception handling using just a few relays. This
feature of the Z3 is one of the most elegant in the whole design. Many of the early
microprocessors of the 1970s did not include exception handling and left this to the
software. Zuse’s approach is better, since it frees the programmer from the tedium
of checking the bounds of his numbers before each operation.

5.4.2 Addition and Subtraction

To add or subtract two floating-point numbers x and y, their representation must be
reduced to the same exponent. After this has been done, only the mantissas need to
be added or subtracted. If the exponents are different, the mantissa of the smaller
number is shifted to the right by as many places as necessary (and its exponent is
incremented accordingly to keep the number unchanged) until both exponents are
equal. Of course, it can happen that the smaller number becomes zero after 17 shifts
to the right.

The signs of the two numbers are compared before deciding on the type of
operation to be executed. If an addition has been requested and the signs are equal,
the addition is performed. If the signs are different, a subtraction is executed. If a
subtraction has been requested and the signs are different, an addition is executed.
If the signs are the same, the subtraction is executed. A special circuit sets the sign
of the result according to the signs of the arguments and the sign of the result.

Addition and subtraction are controlled by a chain of relays (not by a control
wheel) since the maximum number of cycles needed is low. Figure 5.9 shows the
synchronization required for the addition of two numbers. Initially, the arguments
for the addition are stored in the register pairs . <Af,Bf. > and . <Ab,Bb. >. In the first
cycle, the exponents are subtracted. In cycle 2, the mantissa with the larger exponent
is loaded into register Ba and the mantissa with the smaller exponent into register
Bb. The mantissa in register Bb is shifted as many places to the right as the absolute
value of the difference of the exponents (exception handling takes care of the case
when the smaller number becomes zero after the shift). In stages I, II, and III of cycle

5 This was not the case with the Z1. Zuse thought of, but did not implement, exception handling
in the Z1. The machine could not correctly perform computations involving zero [Zuse, personal
communication].

5.4 Numerical Algorithms 103

Fig. 5.9 The 3 cycles needed for the addition algorithm. The arguments for the addition are stored
in the register pairs . <Af,Bf. > and . <Ab,Bb. > before the operation is started

Fig. 5.10 The 4–5 cycles needed for the subtraction algorithm. The first argument is stored in the
register pair . <Af,Bf. > and the second in . <Ab,Bb. > before the operation is started

2 the mantissas are added, and finally, the processor tests if the result is greater than
2. If this is the case, the mantissa is shifted one position to the right and the exponent
is incremented by 1. Note that the test “if (Be. ≥2)” in part A of the arithmetic unit
is done after Be has already been computed in part B during stages I, II, and III of
cycle 2.

In the case of a subtraction four or five cycles are needed. Figure 5.10 shows
the synchronization required for a subtraction. The first two cycles are almost
identical to the first two cycles of the addition algorithm, but now the mantissas
are subtracted. Cycle 3 is executed only when the difference of the mantissas is
negative. The effect of cycle 3 is just to make the mantissa of the result positive.
Cycle 4 is very important: the difference of two normalized mantissas can have
many zeros in the first bit positions to the left. The result is normalized by shifting

104 5 The Architecture of the Z3

Be to the left as many places as necessary (this is done with the shifter between the
relay box Fd and register Bb). The number of one-bit shifts is subtracted from the
exponent in part A of the processor. In cycle 5, the result is stored in the register pair
. <Af,Bf. >.

5.4.3 Multiplication

The multiplication algorithm of the Z3 is like the one used for decimal multiplica-
tion by hand, that is, it is based on repeated additions of the multiplicand according
to the individual binary digits of the multiplicand. At the beginning of the algorithm,
the first argument is stored in the register pair . <Af,Bf. >. The second argument is
stored in the register pair . <Ab,Bb. >. The temporal register pair . <Aa,Ba. > is set
to zeroes. Figure 5.11 shows the microsequencing produced by the multiplication
wheel of the control unit. The algorithm takes 16 cycles to run. Note that only the

Fig. 5.11 The 16 cycles needed for the multiplication algorithm. The i-th bit of register Bf is
denoted by Bf[i]. The first argument is stored in the register pair . <Af,Bf. > and the second in
. <Ab,Bb. > before the operation is started

5.4 Numerical Algorithms 105

bits of the multiplicand from position .−14 to position 0 are used. The exponents are
added in the first cycle, and the result just loops afterward in part A of the arithmetic
unit. The mantissas are handled in part B of the unit. Register Ba contains the partial
result of the computation. The basic multiplication loop has the following form:

Ba:=Be/2
Be:=Ba + Bb×(i-th bit of Bf)

for .i = −14, . . . , 0. The partial result Be is shifted one position to the right, to
produce Ba:=Be/2. This is done with the shifter connected to the relay box Fc.

The result of the multiplication is a number .1 ≤ r < 4 (for arguments within
bounds). In the last cycle, there is a check to see if .r ≥ 2. If this is the case the result
is shifted one position to the left and a 1 is added to the exponent of the result.

5.4.4 Division

The division algorithm is similar to the multiplication algorithm, but subtraction
is used repeatedly instead of addition. At the beginning of the algorithm, the
dividend is stored in the register pair . <Af,Bf. >. The divisor is stored in the register
pair . <Ab,Bb. >. The temporal register pair . <Aa,Ba. > is set to zeroes. Figure 5.12
shows the microsequencing produced by the division wheel of the control unit. The
algorithm takes 18 cycles to run.

The main idea of the algorithm is very simple. The exponent of the result is
obtained by subtracting the exponents of the dividend and divisor. Now for the
mantissa: assume that we want to compute .x/y for the mantissas x and y. Since
we are dealing with normalized numbers, the first digit of the result is 1 if . x ≥ y

and zero if .x < y. In the first case, we set the first digit of the result to 1 and compute
the remainder, which is .x −y. The remainder is divided recursively by y. To do this,
it is shifted one position to the left, and the new result bit is stored at position . [−1]
of register Bf (in this way nullifying the effect of the shift). If the result bit is zero,
the remainder is just x, and the recursive division is continued as in the first case.

The basic division loop has the following form:

Ba:=2×Be
if (Ba−Bb ≥ 0) then Be:=Ba−Bb, Bf[i]:=1

else Be:=Ba Bf[i]:=0

for .i = 0, . . . ,−14. The partial result Be is shifted one position to the left to produce
Ba:=2. ×Be. This is done with the shifter connected to the relay box Fc.

The result of the division of mantissas is a number .1/2 < r < 2. This condition
is tested in cycles 17 and 18. If .r < 1, a 1 is subtracted from the exponent, and the
result is shifted one position to the left to get a normalized number.

106 5 The Architecture of the Z3

Fig. 5.12 The 18 cycles needed for the division algorithm. The i-th bit of register Bf is denoted
by Bf[i]. The dividend is stored in the register pair . <Af,Bf. > and the divisor in . <Ab,Bb. > before
the operation is started

5.4.5 Square Root Extraction

The square root algorithm is the jewel in the Z3’s crown. Figure 5.13 shows the
microsequencing required during the 20 cycles needed to compute the square root
of a number. The argument for the operation is stored in the register pair . <Af,Bf. >.
The register pair . <Aa,Ba. > is initialized to zeroes. The algorithm computes the
square root of numbers with an even exponent. If the exponent is an odd number,

5.4 Numerical Algorithms 107

Fig. 5.13 The 20 cycles needed for the square root algorithm. The i-th bit of registers Bf and Af
are denoted by Bf[i] and Af[i], respectively. The argument is stored in the register pair . <Af,Bf. >
before the operation is started

the mantissa is shifted one place to the left, and the exponent is decremented by one.
The final exponent (computed in cycle 19) is half this initial exponent.

The main idea of the algorithm is to reduce the square root operation to a division.
If we want to compute the square root of x, we need a number Q such that . x/Q =
Q. The result Q is built sequentially by setting the i-th bit to 1 and then testing
whether the condition .x > Q2 still holds. If this is not the case the i-th bit must be
set to 0.

108 5 The Architecture of the Z3

Assume that we have already computed from bit 0 to bit .−i+1 of the final result.
Denote by Q.−i+1 the mantissa

. Q−i+1 = Bf[0] × 20 + Bf[−1] × 2−1 + · · · + Bf[−i + 1]2−i+1.

Bit . −i is then set to to . q−i and it must hold that

. x ≥ Q2−i = (Q−i+1 + q−i2
−i)2

This is true if

. (x − Q2−i+1) − 2−iq−i (2Q−i+1 + 2−iq−i) ≥ 0

Define . t−i using the expression

. 2−i t−i = (x − Q2−i+1)2
−121 − 2−iq−i (2Q−i+1 + 2−iq−i)

This can be written as

. 2−i t−i = t−i+12
−i+12−121 − 2−iq−i (2Q−i+1 + 2−iq−i)

where we have used the recursive definition .2−i+1t−i+1 = (x − Q−i+1)
2.

Simplifying the last expression we finally get:

. t−i = 2t−i+1 − q−i (2Q−i+1 + 2−iq−i)

If . t−i is positive for .q−i = 1, we set bit . −i of the final result to 1, i.e., Bf[. −i]:=1. If
. t−i is negative, we set Bf[. −i]:=0. The recursive computation is started with .t0 = x.
.Q−i+1 represents at each step the partial result contained in register Bf. Bit . −i is
tentatively set and the sign of . t−i is tested.

The basic loop of the square root algorithm for bit . −i has the following form:

Ba:=2×Be
Bb:=2×Bf
Bb[−i]:=1
if (Ba−Bb ≥ 0) then Be:=Ba−Bb, Bf[−i]:=1

else Be:=Ba, Bf[−i]:=0

All bits of register Bf are used for the computation of the square root. If the
original number lies within bounds, the result is also within bounds.

5.5 Complete Architecture of the Z3 109

5.4.6 Read and Display Instructions

The two most complex instructions of the Z3 are those related to the input and output
of decimal numbers. A decimal number of four digits entered via the keyboard
is first converted into binary. This is done by reading each digit sequentially,
transforming it into a binary number, and storing it in the bits Ba[. −10], Ba[. −11],
Ba[. −12], and Ba[. −13] of register Ba. The number in register Ba is multiplied
by 10 and the procedure is repeated for the other digits. After four iterations, the
decimal input has been transformed to a binary number (the exponent is adjusted to
the correct value). The difficult part is handling the exponent. If the exponent e is
positive, the mantissa has to be multiplied e times with 10. If it is negative, it must
be multiplied . |e| times with 0.1. Multiplying with 10 is relatively easy: the mantissa
in Be can be shifted one bit to the left and then stored in Ba (that is Ba:=2. ×Be).
At the same time, Be can be shifted 3 places to the left and can be stored in Bb
(that is Bb:=8. ×Be). The addition of Ba and Bb then provides the desired result: the
multiplication of the original number in Be with the constant 10. The process takes
4 cycles for multiplication, that is 32 cycles for the decimal exponent +8. Since a
read operation needs a minimum of 9 cycles, this means that a decimal number with
exponent +8 is read in 41 cycles.

In the case of negative exponents, multiplication with the constant 0.1 is
performed using both shifters and the adders. This multiplication is somewhat more
complex because 0.1 is a periodic number in the binary system. The description of
the microsequencing used would take us too far away from the main topics, so we
omit it here.

The display instruction works by multiplying or dividing iteratively by 10. If the
binary exponent of the number in register R1 is positive, the number is multiplied
with 0.1 as many times as needed to make the binary exponent equal to 2 and until
the first left four bits of register Bf contain a number between 0 and 9 (0000 and
1001). This is the decimal digit that can be displayed in the next column of the
output panel. The number is subtracted from the mantissa in Bf, and the process
continues for the following digits. If the binary exponent of the number in register
R1 is negative, the process is similar, but multiplications with the constant 10 are
used.

The tables of microoperations needed for binary-decimal and decimal-binary
conversion can be found in Rojas (1998).

5.5 Complete Architecture of the Z3

We are able to understand the detailed diagram of the Z3 shown in Fig. 5.14. We see
some of the components that were discussed in the previous sections.

110 5 The Architecture of the Z3

EdEc
Ea Eb Ei

Ff

Fd

nBgE d,c,b,aZ

Bm

Ng

FbFa

multiplexer

A B

Ba Bb

Af

Bf

Be

Ae

As 1

– 4
Ee

shift -1

Aa Ab

a l

bl

shift (–2..1)

Fp Fq

shift (–16..15)

Bs 1

Bt

shift (-1..0)

–+ dnacifingistnenopxe
]1[]7[]41[

64 numbers

memory

Ah1

ai

Ah2

a j

Bh

bj

Fc

address

13 Fh,i,k,l,m
nor
mali
ze

zero
infinite

Ef

U
D
M
J
W
S
V

read
display
multiplication
division
square root
add/sub
sign

control unit

Pa opcode

Pb address

punched tape

•• ••
• • ••
•• •

Z (keyboard) R (result)

QK

9 9 9 9
8 8 8 8

0 0 0 0

9 9 9 9
8 8 8 8

0 0 0 0
1 1 1 11

• • •

1 1 1 1

• • •+
–

+
–

–81 0 –1• • • • • •8

exponent of input

–81 0 –1• • • • • •8

exponent of result

address bus

Fig. 5.14 The complete architecture of the Z3

The control unit and I/O panels have been discussed already. Note that the four
decimal digits of the input keyboard are transferred into register Ba using the relay
boxes Za, Zb, Zc, and Zd, which are activated one after the other.

The relay boxes Eg and Ei are used to directly set some useful constants into the
exponent registers (+13 and . −4). The shifter Ee between register Af and register Aa

References 111

is used for the square root algorithm. The exponent of the result (Aa) becomes half
the exponent (Af) of the original number.

Ah. 1 is a relay acting as a flip-flop. When it is set to 0, the register pair . <Af,Bf. >
is accessed by load operations. When it is set to 1, the register pair . <Ab,Bb. > is
accessed. This relay is reset to 0 by the control line a. i . The control lines a. l , a. j , b. l ,
and b. j are used to clear the registers Af, Ab, Bf, and Bb when needed.

The box labeled “zero, infinite” below Ae represents the circuitry for exception
handling. They snoop permanently on the data bus (results of operations and data
from memory) and raise the corresponding exception flags when needed. The shifter
below Be is used to displace the mantissa one bit to the right. This provides the
normalization needed for the mantissa whenever Be. ≥2.

Fp and Fq are the relays that control the number and direction of one-bit shifts
in the shifter below the relay boxes Fc and Fa. Fh, Fi, Fk, Fl, and Fm have the same
function relative to the other shifter. Using these five bits, the numbers between . −16
and 15 can be represented, and this is also the range of the second shifter. When such
a shift is performed, the number represented by the relays Fh to Fm is transferred
through the relay box Bn to register Ab to modify the exponent of the result. If the
number is shifted 10 positions to the left, then +10 is subtracted from the exponent
of the result. Such drastic shifts are needed mostly after subtractions.

Take another look at the diagram of the Z3. It all makes sense now and looks
as conventional as any modern small floating-point processor. It is indeed amazing
how Konrad Zuse was able to find the adequate architecture right from the start,
with one notable exception, the non-inclusion of the conditional branch. The Z3
processor uses only 600 relays; the memory required three times as many. By having
to optimize the design, by having to save hardware everywhere, Zuse was forced to
think and rethink the logic structure of his machine. He did not have the luxury of
the almost unlimited funding provided by the US military for the development of
the ENIAC or by IBM for the Mark I. He was all alone, and while this may have
worked to his advantage from a conceptual standpoint, it may also have worked to
his disadvantage in terms of the negligible impact that the Z1 and Z3 had on the
emerging American computer industry after the war (Stern 1981).

References

Czauderna, K.H. 1979. Konrad Zuse, der Weg zu seinem Computer Z3. In Berichte der
Gesellschaft für Mathematik und Datenverarbeitung. Munich: Oldenbourg Verlag.

Knuth, D.E. 1981. The Art of Computer Programming – Seminumerical Algorithms, Vol. 2. Boston:
Addison-Wesley Professional.

Koren, I. 1993. Computer Arithmetic Algorithms. Englewood Cliffs: Prentice Hall.
Range, J. 2016. Validierung und Visualisierung des Mikrocodes der Z3 von Konrad Zuse. Master’s

Thesis, Humboldt Universität Berlin.
Rojas, R. 1997. Konrad Zuse’s legacy: The architecture of the Z1 and Z3. IEEE Annals of the

History of Computing 19(2): 5–16. https://doi.org/10.1109/85.586067.

https://doi.org/10.1109/85.586067
https://doi.org/10.1109/85.586067
https://doi.org/10.1109/85.586067
https://doi.org/10.1109/85.586067
https://doi.org/10.1109/85.586067
https://doi.org/10.1109/85.586067
https://doi.org/10.1109/85.586067

112 5 The Architecture of the Z3

Rojas, R. 1998. Die Rechenmaschinen von Konrad Zuse. Berlin: Springer. https://doi.org/10.1007/
978-3-642-71944-8.

Stern, N. 1981. From ENIAC to UNIVAC. Bedford: Digital Press.
Zuse, K. 1941. Patentanmeldung Z-391. Berlin: German Patent Office.

https://doi.org/10.1007/978-3-642-71944-8
https://doi.org/10.1007/978-3-642-71944-8
https://doi.org/10.1007/978-3-642-71944-8
https://doi.org/10.1007/978-3-642-71944-8
https://doi.org/10.1007/978-3-642-71944-8
https://doi.org/10.1007/978-3-642-71944-8
https://doi.org/10.1007/978-3-642-71944-8
https://doi.org/10.1007/978-3-642-71944-8
https://doi.org/10.1007/978-3-642-71944-8
https://doi.org/10.1007/978-3-642-71944-8

Chapter 6
How to Make Zuse’s Z3 a Universal
Computer

The computing machine Z3, built by Konrad Zuse from 1938 to 1941, could
only execute fixed sequences of floating-point arithmetical operations (addition,
subtraction, multiplication, division, and square root) encoded in a punched tape.
An interesting question to ask, from the viewpoint of the history of computing, is
whether or not these operations are sufficient for universal computation.1

In this chapter, we show that in fact a single program loop containing these
arithmetic instructions can simulate any Turing machine whose tape has a a given
finite size. This is done by simulating conditional branching and indirect addressing
by purely arithmetic means. Zuse’s Z3 is thus, at least in principle, as universal as
today’s computers that have a limited addressing space.

6.1 Universal Machines and Single Loops

No One Has Ever Built a Universal Computer The reason is that a universal
computer consists, in theory, of a fixed processor and a memory of unlimited size.
This is the case of Turing machines, which have infinitely long tapes. Also, in
the theory of general recursive functions, there are a small set of rules and some
predefined functions, but there is no upper bound on the size of intermediate results.
Modern computers are therefore only potentially universal: they can perform any
computation that a Turing machine with a tape of bounded length can perform.
If more storage is required, more can be added without modifying the processor
(provided that the additional memory is still addressable).

It is the purpose of this chapter to show that Konrad Zuse’s Z3, a computing
automaton built in Berlin between 1938 and 1941, could in principle be programmed

1 This chapter is based on Rojas (1998b).

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Rojas, Konrad Zuse’s Early Computers, History of Computing,
https://doi.org/10.1007/978-3-031-39876-6_6

113

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39876-6protect T1	extunderscore 6&domain=pdf
https://doi.org/10.1007/978-3-031-39876-6_6
https://doi.org/10.1007/978-3-031-39876-6_6
https://doi.org/10.1007/978-3-031-39876-6_6
https://doi.org/10.1007/978-3-031-39876-6_6
https://doi.org/10.1007/978-3-031-39876-6_6
https://doi.org/10.1007/978-3-031-39876-6_6
https://doi.org/10.1007/978-3-031-39876-6_6
https://doi.org/10.1007/978-3-031-39876-6_6
https://doi.org/10.1007/978-3-031-39876-6_6
https://doi.org/10.1007/978-3-031-39876-6_6
https://doi.org/10.1007/978-3-031-39876-6_6

114 6 How to Make Zuse’s Z3 a Universal Computer

like any other modern computer. This is a rather curious result, since the Z3 can only
compute sequences of arithmetic operations (addition, subtraction, multiplication,
and division) stored in a punched tape. There is no conditional branching. Since
both ends of the punched tape can be joined together, the Z3 is a machine that can
repeatedly execute a single loop of arithmetic operations acting on numbers stored
in memory.

It is well known that any computer program that contains conditional branches
and the usual instructions of imperative languages can be programmed with a single
WHILE loop (Harel 1980). Also, all conditional branches can be eliminated from
the loop (Ibarra et al. 1983). I showed in Rojas (1996a) that if the Z3 is extended with
indirect addressing, it can simulate a Turing machine. We will adopt the techniques
used in those papers to show that complex computations can be simulated by a single
program loop of a machine able to compute the four basic arithmetic operations.

Our computing model is the following: there are memory locations available
that will be denoted by lowercase letters. We can only refer explicitly to memory
addresses (there is no indirect addressing). Initially (for the sake of simplicity), we
will limit our programs for the Z3 to a language containing only statements of the
form

. a = b op c,

where op stands for one of the four basic arithmetic operations. Any statement of
this form can be “compiled” using the two registers of the Z3 and four assembler
instructions (which load the two argument registers in the appropriate order):

LOAD b
LOAD c
op
STORE a

The store operation implicitly refers to the first register (accumulator) of the proces-
sor. All computations are performed with floating-point numbers. The mantissa has
a precision of 16 bits for its fractional part. The Z3 uses normalized floating-point
numbers (i.e., with a mantissa m such that 1 ≤ m < 2). The special case of a zero
mantissa is handled with a special code (like in the IEEE standard). There is also a
“halt” instruction in the Z3 (when a result is displayed on the console the machine
stops).

6.2 Simulating Branches

Here we show how to simulate the operation of a CASE statement using a technique
introduced in Ibarra et al. (1983) and used previously for the development of the
theory of recursive functions (Péter 1967). Define the state of the machine as the

6.2 Simulating Branches 115

state of its memory. Assume that in a program P , there are n consecutive sections of
code .P1, . . . , Pn and that the variable .z ∈ {1, 2, . . . , n} is used to select the section
that should perform the computation we are interested in. The general strategy is
to execute all n sections of code, one after the other, but we will allow only the
z-th section to modify the memory contents. To implement this idea, we transform
each section of code . Pj into equivalent code . P ′

j according to the following rule: At
the beginning of each section . Pj a comparison is made and if .z = j the auxiliary
variable t is set to 0; otherwise, it is set to 1. The variable t can be interpreted as a
flag for the “selected section,” since it will be only zero in . Pz. Now all the original
statements in the program .P1, . . . , Pn of the form .a = b op c are transformed into

. a = a · t + (b op c) · (1 − t)

and are compiled accordingly. Therefore, the state of variable a will not be
modified unless the computation occurs within the z-th code section. When all
statements have been transformed in this way and the appropriate initialization
of t has been inserted at the beginning of each code section, we can execute the
transformed program .P ′

1, . . . , P
′
n from beginning to end. Most of the computations

are superfluous, since we execute all sections of code, but only . P ′
z modifies the

memory, as is expected from a CASE statement.
All we need to do now is to show that it is indeed possible to do the calculation

. if (z = j) then t = 0 else t = 1.

where z and j are integers. The simplest approach is to use the binary representation
of z, which is stored using the auxiliary variables .z1, z2, . . . , zm. The number m of
bits used is fixed in advance according to the total number n of sections of code
that have to be selected. For each code section j , the complement of the binary
representation of j is stored in the variables .c(j)

1 , c
(j)

2 , . . . , c
(j)
m . The following

arithmetic calculation at the beginning of each code section j sets the variable t
to its correct value:

. t = 1 −
[(

c
(j)

1 − z1

) (
c
(j)

2 − z2

)
· · ·

(
c
(j)
m − zm

)]2

The variable t is set to zero only if all factors in the expression are . ±1, but this is
only the case when .z = j .

It should now be clear that an unconditional jump to code section j can be
programmed in a section of code . P ′

i by setting the next value of z to j (i.e. their
binary representations) at the end of . P ′

i and going back to the beginning of the
transformed program .P ′

1, . . . , P
′
n. This is done by storing the program in a single

loop of punched tape that is used repeatedly.
In this and other programs, all necessary constants (the binary representations of

the code section numbers) can be precomputed and stored before we start the CASE
statement.

116 6 How to Make Zuse’s Z3 a Universal Computer

This proves that with the computing model of the Z3 we can, in principle,
perform any computation that any other computer with a bounded memory can
perform. In Rojas (1998b), I also show how to simulate a Turing machine using
the approach described in this section.

6.3 Halting the Computation

The attentive reader will have noticed that the master loop of computations never
stops. Algorithms, however, must stop after a finite number of steps. Fortunately,
the Z3 has an additional feature that provides the solution to this problem.

Whenever an undefined operation is performed, the Z3 stops and a lamp lights up
on the console. This is the case, for example, for the operation . 0/0. Thus we define
a state .Q0 = 0 of the computation as the “halting state,” with .Q0 = 1 as the initial
value. The computation .0/Q0 is performed at the beginning of the master loop. If
the simulation reaches state .Q0 = 0 the machine will stop. In the algorithm being
executed, we set . Q0 to this value when we want to stop the master loop.

If Zuse had not thought of trapping undefined operations, we would have
been unable to stop the master loop. One possible way out in that case would
be to consider those cycles in which nothing is altered as the “halting state” of
the machine, but the human operator would have some problems identifying this
situation.

6.4 Conclusions

The main result discussed in this chapter is intriguing because it looks so artificial.
From the theoretical point of view, it is interesting to see that limited precision
arithmetic embedded in a WHILE loop can compute anything modern computers
can. It could be argued that whenever we expand the memory (to accommodate more
tape positions for a simulated Turing machine), the program in the punched tape has
to be expanded as well (to cover the new memory addresses), and the number of bits
(m) used to identify the code sections has to be increased. If we think of the punched
tape as part of the processor (when simulating a Universal Turing Machine), then
we are extending the processor when we enlarge the program in the punched tape.
Although this is undesirable, in real computers, there is also a limit to the size of the
memory we can manage (given by the addressable space, i.e., the number of bits in
the address registers). If we expand the memory, we need more addressing bits and
the processor may have to be expanded (going, for example, from 16-bit to 32-bit
registers).

The result shown in this chapter seems counterintuitive until we realize that
operations like multiplication and division are iterative computations in which
branching decisions are taken by the hardware. The conditional branchings we

References 117

need are embedded in these arithmetical operations, and the whole purpose of the
transformations used is to lift the branches up from the hardware in which they are
buried to the software level, so that we can control the program flow. The whole
magic of the transformation consists of making the hardware branchings visible to
the programmer.

A possible criticism of the approach discussed here could be that it greatly slows
down the computations. From a purely theoretical point of view, this is irrelevant
unless we introduce a complexity measure and demand a simulation of Turing
machines capable of running without an exponential slowdown. From a practical
point of view, obviously nobody would program the Z3 as we just described, in the
same way that nobody solves industrial problems using Turing machines.

We can therefore say that, from an abstract theoretical perspective, the comput-
ing model of the Z3 is equivalent to the computing model of today’s computers.
From a practical perspective, and in the way the Z3 was really programmed, it
was not equivalent to modern computers. However, it is clear to me from the study
of Zuse’s unpublished manuscripts (held in the archive of Deutsches Museum in
Munich) that after completing the Z3, he realized (between 1943 and 1945) that
he could “lift” the decisions taken in hardware to the software level, to give the
programmer full control of the computation. His plans for a “logistic machine,” so
elementary that the instruction set consisted exclusively of Boolean operations is
discussed in Chap. 11.

References

Harel, D. 1980 On Folk Theorems. Communications of the ACM 23(7): 379–389. https://doi.org/
10.1145/358886.358892.

Ibarra, O.H., S. Moran, L.E. Rosier. 1983. On the Control Power of Integer Division. Theoretical
Computer Science 24(1): 35–52. https://doi.org/10.1016/0304-3975(83)90129-9.

Péter, R. 1967. Recursive Functions. New York: Academic Press.
Rojas, R. 1996a. Conditional Branching is not Necessary for Universal Computation in von

Neumann Computers. Journal of Universal Computer Science 2(11): 756–767. https://doi.org/
10.3217/jucs-002-11-0756.

Rojas, R. 1998b. How to make Konrad Zuse’s Z3 a universal computer. IEEE Annals of the History
of Computing 20(3): 51–54. https://doi.org/10.1109/85.707574.

https://doi.org/10.1145/358886.358892
https://doi.org/10.1145/358886.358892
https://doi.org/10.1145/358886.358892
https://doi.org/10.1145/358886.358892
https://doi.org/10.1145/358886.358892
https://doi.org/10.1145/358886.358892
https://doi.org/10.1145/358886.358892
https://doi.org/10.1016/0304-3975(83)90129-9
https://doi.org/10.1016/0304-3975(83)90129-9
https://doi.org/10.1016/0304-3975(83)90129-9
https://doi.org/10.1016/0304-3975(83)90129-9
https://doi.org/10.1016/0304-3975(83)90129-9
https://doi.org/10.1016/0304-3975(83)90129-9
https://doi.org/10.1016/0304-3975(83)90129-9
https://doi.org/10.1016/0304-3975(83)90129-9
https://doi.org/10.3217/jucs-002-11-0756
https://doi.org/10.3217/jucs-002-11-0756
https://doi.org/10.3217/jucs-002-11-0756
https://doi.org/10.3217/jucs-002-11-0756
https://doi.org/10.3217/jucs-002-11-0756
https://doi.org/10.3217/jucs-002-11-0756
https://doi.org/10.3217/jucs-002-11-0756
https://doi.org/10.3217/jucs-002-11-0756
https://doi.org/10.3217/jucs-002-11-0756
https://doi.org/10.1109/85.707574
https://doi.org/10.1109/85.707574
https://doi.org/10.1109/85.707574
https://doi.org/10.1109/85.707574
https://doi.org/10.1109/85.707574
https://doi.org/10.1109/85.707574
https://doi.org/10.1109/85.707574

Chapter 7
The S1 and S2: Zuse’s Work
for the German Military 1941–1945

This chapter describes the architecture and operation of the S1 and S2 computing
machines built by Konrad Zuse between 1941 and 1945. Both were special-purpose
devices for computing aerodynamic corrections to the wings of radio-controlled fly-
ing bombs, that is, the Henschel Flugzeug-Werke’s HS-293 and HS-294, precursors
of modern cruise missiles.

The S1 and S2 were fed with the result of dozens of measurements of shape
parameters from the wings of a bomb. The data were processed using an accumu-
lating loop consisting of one iteration for each group of four measurements. Several
additions/subtractions and a few multiplications were executed in each iteration.
The final result consisted of just three numbers, which allowed the technicians
to adjust the left, right, and rear wings in order to achieve smooth flight. All
computations and constants were hardwired in the S1 and S2 using rotary switches
and relays. The S2 was more advanced than the S1: it eliminated manual data entry
by automatically reading the values provided by digitally controlled measuring
instruments that transformed an analog into a digital value. This chapter concludes
with a discussion of the effect of the war on Zuse’s work and some related questions.

7.1 Introduction

Konrad Zuse’s contribution to the development of the first German computers has
been extensively documented by now. The two most important early machines built
by Zuse until 1941 in Berlin were the Z1 and the Z3, which have been reconstructed
for German museums (Rojas et al. 2005). However, little is known about two
other important machines designed by him, the S1 and S2, custom-made for the
military. Zuse’s official work during most of the war was, in fact, as an engineer
for the Henschel Flugzeug-Werke, a company producing airplanes and other kinds
of armament during World War II. During the years in which the S1 and S2 were

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Rojas, Konrad Zuse’s Early Computers, History of Computing,
https://doi.org/10.1007/978-3-031-39876-6_7

119

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39876-6protect T1	extunderscore 7&domain=pdf
https://doi.org/10.1007/978-3-031-39876-6_7
https://doi.org/10.1007/978-3-031-39876-6_7
https://doi.org/10.1007/978-3-031-39876-6_7
https://doi.org/10.1007/978-3-031-39876-6_7
https://doi.org/10.1007/978-3-031-39876-6_7
https://doi.org/10.1007/978-3-031-39876-6_7
https://doi.org/10.1007/978-3-031-39876-6_7
https://doi.org/10.1007/978-3-031-39876-6_7
https://doi.org/10.1007/978-3-031-39876-6_7
https://doi.org/10.1007/978-3-031-39876-6_7
https://doi.org/10.1007/978-3-031-39876-6_7

120 7 The S1 and S2: Zuse’s Work for the German Military 1941–1945

built, Zuse was jump-starting his computer company with a contract for developing
the Z4, a more advanced variation of the Z3, which would later become the first
computer in operation on the European continent (that is, without considering the
British computers). From 1941 to 1945, Zuse’s work for Henschel resembled more
the activity of a consultant, who would provide solutions for pressing problems
devoting only one and a half days a week to the company itself.

This chapter contains the first detailed description of the special-purpose S1
and S2 machines (Zuse 1942a, 1944a). They are interesting from the point of
view of the history of computing since the S2 was one of the first attempts at
implementing automatic measurement and control in a factory setting. Also, the
exact relationship between Zuse’s pioneering ideas and his work for the military
establishment has been the source of many legends. This chapter provides some
useful information about this aspect of Zuse’s life. Although the existence of the
S1 and S2 is well known—Zuse himself mentions them briefly in two pages of his
memoirs (Zuse 1970)—few details about their architecture and mode of operation
have been published. The information was acquired through a detailed study and
reverse engineering of the only remaining information, that is, the circuit diagrams
of the S1 (Zuse 1942b) and S2 (Zuse 1944a), and a patent application for the S2
analog-to-digital converter (Zuse 1953b).

When World War II started, Zuse had already built his first mechanical computing
machine (the Z1) and was working on the relay version of the same architecture, the
Z3. He was called to the Eastern Front immediately, but through his connections
with the scientific establishment, and his friends at the Technische Hochschule
Berlin, where he had studied civil engineering, he could arrange for a discharge
that brought him back to Berlin in March 1940 as an engineer for the Henschel
Flugzeug-Werke. His most important “business connection” was probably with this
company, where he had worked as a static forces analyst for 1 year after finishing
his studies in 1935. The Henschel Flugzeug-Werke produced locomotives, autos,
and armaments. In 1933, they had started producing airplanes at a new location in
the south of Berlin and, when the war started, flying bombs.

Back from the front in 1940, Zuse continued working on computing machines,
albeit by night and during the weekends, until he could arrange to finance the Z3 that
same year. The Z3 became operational in May 1941. One month earlier, Zuse had
founded the Zuse Ingenieurbüro und Apparatebau company. However, during the
summer of 1941, he was called to the front. Prof. Herbert Wagner asked immediately
for his discharge and reassignment to the Henschel Flugzeug-Werke. A few days
later, Konrad Zuse was back from the army, for the second time, and would remain
in Berlin until the final months of the war.

Herbert Wagner, a professor at the Technical University until 1938, was a
maverick engineer, who had worked at the Junkers factories in Dessau developing
airplanes from 1938 to 1940. His unconventional research methods led to friction
with the Junkers management. He moved to the Henschel Flugzeug-Werke in April
1940, where he became the head of Section F in charge of developing remote-
controlled self-propelled flying bombs. This was the section Zuse was assigned to
after each of his two discharges from the army.

7.2 The HS-293 Flying Bomb 121

7.2 The HS-293 Flying Bomb

The HS-293 flying bomb was developed by Wagner’s team. The bomb was released
by an airplane, and an operator would follow the bomb’s trajectory by sight. The
operator had a small joystick that allowed him to control ailerons and therefore the
bomb’s flight path. The commands were sent by radio. Other variations of the bomb
used cables unrolling as the bomb fell, to avoid radio jamming. There were many
types of HS-293 bomb, and, later on, the HS-294, but such details are not important
for our topic.

Figure 7.1 shows a picture of a HS-293 being tested. The bomb weighed almost
a ton and had a wingspan of 3.1 meters. The propulsion rocket burned liquid fuel.
Figure 7.2 shows a drawing of the main components of the bomb. The rocket
propulsion is located in the lower part. The rest of the bomb resembles a miniature
airplane with one aileron in each wing and in the tail.

The first prototypes of the HS-293 were built with expensive wings manufactured
to high precision. It became necessary to use simpler wings coated with aluminum
skin, as airplanes are built today. However, the shape of those aluminum wings was
not perfect, and deviations from the ideal form could lead to vibrations in flight, or
unbalanced lift, making the bomb uncontrollable for the operator. Wagner’s solution
was to measure the deviation of the wing’s shape from the ideal form at dozens of

Fig. 7.1 A HS-293 flying bomb in a production test bed

122 7 The S1 and S2: Zuse’s Work for the German Military 1941–1945

Fig. 7.2 Drawing of the HS-293 flying bomb (Image: Wikimedia Commons)

points and, using this data, compute a repositioning of the wings’ angle of attack to
compensate for the fabrication errors. This allowed the Henschel Flugzeug-Werke
to produce controllable flying bombs at lower cost.

After the wing shape measurements were taken, operators working in two
shifts made all necessary computations using desktop mechanical calculators. The
computations could consume dozens of man-hours. Therefore, computing was a
major bottleneck for the production of flying bombs.

Around the end of 1941, Konrad Zuse proposed to Wagner to build a machine
capable of computing the corrections automatically. For this, he derived the logic
circuits from the completed Z3. The result was the HS-1 machine, which became
operational in 1942 and was used without interruption until its destruction in 1944
during a bombing raid. Figure 7.3 shows a sketch, drawn by Zuse after the war, of
the shape of the flying bomb and the approximate location of the places at which the
shape measurements were made (above and below the wings). The positions were
selected along lines parallel to the central axis and at symmetrical distances from
it. The measurements were collected in groups of four, according to the following
scheme:

Measurement Position

a Left wing (above)

b Left wing (below)

c Right wing (above)

d Right wing (below)

In the case of the S1, 24 groups of four measurements were made manually, that
is, 96 measurements in total. Later, for the S2, the number of measurement sites
was increased since the machine itself could automatically control the measurement
instruments.

7.2 The HS-293 Flying Bomb 123

Fig. 7.3 Sketch by Konrad
Zuse of the HS-293 bomb and
the position of control points
for measuring the shape of the
wings (Zuse 1942a, 1953a)

Once the measurements had been taken, three quantities were computed:

. Hl =
n∑

i=1

(ai + bi − ci − di)hi

. F l1 =
m∑

i=1

(ai + bi − ci − di)fi

. F l2 =
m∑

i=1

(ai − bi − ci + di)gi

where the index i runs from 1 to m (the m groups of four symmetrical measurements
for the frontal wings), and from 1 to n (the n groups of four symmetrical
measurements for the tail wing), where .n+m = 24, and, . hi , . gi , and . fi are constants
providing the relative effect of a wing inaccuracy on the lift. The . hi , . gi , and . fi

constants are given for each type of wing and do not have to be recomputed every
time. Hl, . F l1, and .F l2 represent the total inaccuracy and its effect on the rear, left,
and right wings.

Once all the measurements had been processed, the final results were computed
as follows:

.If (H l < 1.0) then

δh = 0

δl = F l1 + F l2 − δ − Hl

δr = F l1 − F l2 + δ − Hl

124 7 The S1 and S2: Zuse’s Work for the German Military 1941–1945

otherwise

δh = 0.53Hl

δl = F l1 + F l2 − δ

δr = F l1 − F l2 + δ

where . δ is a given constant for the measuring instruments. The values . δh, . δl ,
and . δr were then used by the technicians to adjust the wings of the bomb. The
only operations needed for the whole computation are addition, subtraction, and
multiplication. The first two were hardwired in the addition unit. Multiplication was
performed by shifting partial results and adding them.

The S1 computation consisted therefore of a main loop with 24 iterations. In each
iteration, a summand in the summations for Fl1 and Fl2, or one in the summation for
Hl, was computed and accumulated. Once data entry was finished, the user would
request the computation of the final results and could read each of them on a decimal
lamp array.

7.3 Block Architecture of the S1

As mentioned before, Konrad Zuse used a subset of the Z3 circuits to build the S1.
The machine used binary logic and binary numbers, and it was built with relays
and rotary switches. No program tape or any kind of “software” was used: all
calculations were hardwired, and the user entered the data by by pressing a few
buttons and reading the results at the end. The memory was rather limited: only
seven memory cells with 15 bits (the memory cells 1 and 2, for temporary values,
had only 10 bits). The numbers were handled as fixed-point numbers with five bits
to the left of the decimal point and 10 bits to the right. A console was used for data
entry, control, and to read out the results. Figure 7.4 shows a sketch of the S1 drawn
by Zuse (left) and Fig. 7.5 is the only known photograph of the single machine built
in 1942 (right).

In the photograph, a white rectangle is visible on top of the console, on the lower
left. It is a lamp array used to keep track of the data entry (24 by 4 values) and
prompt the operator for the next value needed. The data entry decimal keyboard is
situated immediately to the right of the lamp array. The upper part, on the right,
contains the decimal output display.

The S1 was a microprogrammed machine. No primitive assembler instructions
were provided (in the sense of modern machine code). The data flow inside the
machine was controlled by a few relays. Rotary switches advanced one position
every cycle and opened or closed data paths as needed. Zuse hardwired all phases
of the computation so that the machine had no other use than the intended one. The
S1 could not even add two numbers entered ad-hoc through the keyboard. It could
only execute its fundamental wing-correction loop, read decimal numbers from the

7.3 Block Architecture of the S1 125

Fig. 7.4 Sketch of the S1 by
Konrad Zuse (Image: Konrad
Zuse Internet Archive,
zuse.zib.de)

Fig. 7.5 The only surviving
photograph of the S1. The
console is in front (Image:
Konrad Zuse Internet
Archive, zuse.zib.de)

keyboard, and store them in memory as binary numbers, or read binary numbers
from memory and display them as decimal numbers in the console. According to
Konrad Zuse, the machine was built using 600 relays.

Figure 7.6 shows the block architecture of the S1. The shape measurements were
entered in decimal form, using the keyboard. The precision of the input was limited
to three decimal digits, but a keyboard extension could be used to have two more
decimal digits, for a total of five (around 14 bits of precision). If the input number
was negative, the minus button was pressed. The output could be read from a lamp
display shown on the right of Fig. 7.6. Each decimal digit of the data entry keyboard

126 7 The S1 and S2: Zuse’s Work for the German Military 1941–1945

Fig. 7.6 Block architecture of the S1

was encoded using four bits and passed to register A, one digit in one cycle. The
highest significant digit was multiplied by 10 (as explained below), and the result
was added to the next digit. The result was multiplied by 10, and so on.

The S1 had two registers, whose contents were added in one machine cycle. The
addition circuit was identical to the circuit of the Z3, i.e., it was based on carry-
look-ahead addition. An addition could be performed in one cycle. The result of an
addition could be reloaded to register A or register B. A shifter allowed the machine
to displace the number being loaded onto register B by up to three places to the left
or up to four places to the right. Therefore, it was possible to multiply a number by 8,
4, or 2, just by shifting to the left, or divide it by 2, 4, 8, or 16, by shifting to the right.
The Fc, Ft, and Fd relays closed or opened the data buses shown in the diagram. The
memory contained seven words. A control unit (consisting of chains of relays and
many rotary switches for the microprogramming) coordinated the whole machine.
An array of 96 (four times 24) lamps was lit sequentially in order to prompt the
operator for the next measurement needed in the calculation.

As can be seen, the main differences between the S1 and the Z3 were the lack of
floating-point internal representation, the scale of the machine, and the fact that no
program tape for software was used, since the S1 was special-purpose.

7.4 Operation of the S1 127

7.4 Operation of the S1

The architecture of the S1 can be more easily understood by looking at the sequence
of steps followed by the operator of the machine. Before the operator started
entering numbers, all measurements were taken and written on a report sheet, which
the operator probably let stand on top of the console, to the left, a part of the device
free of lamps and buttons.

The operator started the machine by pressing the button labeled Tgl. The array of
lamps on the lower left side of the console consists of 24 fields subdivided into four
rectangles (see Fig. 7.7). The 24 fields represent the 24 wing measurement positions
(each with the four associated measurements .a, b, c, d, as described above). If the
“a” measurement for the first position was needed, the “a” subfield in the first field
would be illuminated, the “b” subfield for the b measurement, and so on. When
the machine stopped, waiting for input, the operator keyed in the next requested

Fig. 7.7 Diagram of the keyboard of the S1. It is not clear why the decimal keyboard included
buttons for 10 and 11 in two of the keyboard columns maybe just for convenience. Rectangles
correspond to lamps and circles to buttons, except for the decimal output display lamps (upper
right) (Zuse 1942a)

128 7 The S1 and S2: Zuse’s Work for the German Military 1941–1945

measurement using the decimal keyboard on the lower right side of the console.
Then the computation was restarted by pressing the Tgl button. The S1 went on
computing until the next number was needed. It would then stop again and prompt
the operator to enter the data (switching on the next lamp in the lamp array).

As mentioned above, the data entries for the left and right wings were handled
separately from the data for the rear wing (the Hl sum was computed using only
the measurements of the rear wing). Apparently, since it is not documented, the
operator pressed the Hl key on the lower left side of the console as long as such
data were being entered. When the measurements for the wings had been entered,
the operator pressed the F l key (the keys were mutually exclusive). Once all 96
numbers had been entered, the operator would press the . δ key, and . δ1 and . δ2 were
computed, according to the position of the switch on the console. The results were
stored in memory. Since the machine had only seven memory addresses, . δ1 and . δ2
were stored write-erasing .F l1 and . F l2.

The operator could then read the results by pressing the keys with an arrow
pointing down. It was possible to read Hl, . F l1, . F l2, and . δ (before the final
computations were made), and . δ1, . δ2, after the . δ computations had been performed
(Fig. 7.8). The result appeared on the decimal display. Only three decimal digits
were shown.

The keys with the upward arrow, allow the operator to load values of Hl, . F l1,
. F l2, and . δ, directly from a previous computation, probably for testing the machine,
or for confirming a previous result. Those keys read a decimal number, transform
them into binary, and store it in memory.

Some lamps on the console (rectangles labeled Hl, . F l1, etc) allowed the operator
to follow the state of the computations and see which quantities were being
computed at any given moment.

Summarizing: (1) the operator would start the machine, (2) enter 96 numbers
one after the other, signaling in between the change from rear wing to frontal
wings measurements, (3) start the delta computations at the end, and (4) request
the final results by pressing the read-out buttons. Decimal to binary conversion was
handled as in the Z3. The highest decimal digit from the keyboard was read into
register A (encoded as four-bit numbers). Register A was added with zero, and
the result was stored back to register A and to register B, but shifted two places

Fig. 7.8 Numbers assigned
to the 24 fields in the lamp
array, and the four subfields
corresponding to each field

7.4 Operation of the S1 129

to the left (multiplication by four). A new addition of both registers, storing back
the result to register B shifting it one place to the left (multiplication by two), led
to register B holding the original decimal digit multiplied by ten. The procedure
was repeated with the next lower decimal digit and so on, until all three decimal
digits had been processed. Binary to decimal conversion was handled similarly,
but in reverse, and also in the same way as done in the Z3. The S1 performed 96
iterations. In each iteration, three additions/subtractions were needed, as well as one
multiplication. Multiplications were performed in an ad-hoc manner, by shifting and
adding the multiplicand as needed. The multiplication constants were hardwired in
the machine. Rotary switches selected the constant used for multiplication at each
iteration.

An example is illustrative of the way all operations were microprogrammed in
the machine and of the coding technique used by Konrad Zuse. Before the final
computation of the delta corrections, the state of the memory, after all data have
been entered, is the following:

Address Contents

3 . F l1

4 . F l2

5 Hl
6 . δ

The computations and register transfers in 12 cycles are shown in Table 7.1.
The first four columns describe the operations executed in 12 cycles. Ra, Rb

denote register A and register B. Re denotes the result of one addition or subtraction.

Table 7.1 Sequence of operations for computing the corrections to the wings. . F l1, . F l2, H , and
. δ are stored in memory cells 3, 5, 4, and 6

Description of the operations Control signals

Mnemonics Load/Store Result .+/− Address r/w

1 .F l1 − H C3. →Rb Fp6 C3 read

2 C5. →Rb Re. →Ra sub Fd C5 read

3 Re. →C5 Fp3 C5

4 .F l2 − δ C4. →Rb Fp6 C4 read

5 C6. →Rb Re. →Ra sub Fd C6 read

6 Re. →C4 Fp3 C4

7 .(F l1 − H) + (F l2 − δ) C5. →Rb Fp6 C5 read

8 C4. →Rb Re. →Ra Fd C4 read

9 Re. →C3 Fp3 C3

10 .(F l1 − H) − (F l2 − δ) C5. →Rb Fp6 C5 read

11 C4. →Rb Re. →Ra sub Fd C4 read

12 Re. →C4 Fp3 C4

130 7 The S1 and S2: Zuse’s Work for the German Military 1941–1945

Fig. 7.9 Example of the
wiring of a rotary switch with
12 contacts

The adder is always working and executing addition/subtraction on each cycle.
The last four columns describe the control signals needed: the signal “sub” sets
subtraction in the adder, the Cx signal selects the memory cell with address x, the
read signal prepares the memory for a read operation, the default being a write
operation. The Fp and Fd signals open or close the data buses so that the necessary
register transfers are executed. Fd opens register B so that it can be rewritten.
Register A is always rewritten with the last result. Fp6 opens the memory bus for
reading a memory cell into register B. Fp3 opens the memory bus for a memory
write. From this table, it is easy to wire a rotary switch with 12 steps. Figure 7.9
shows the connections only for the “sub” and “Fp6” control relays. The switch
advances one position on each cycle, starting from a neutral initial position. The
switch activates all relays connected at the point of contact when it arrives there.

This example clarifies how Konrad Zuse hardwired the S1. Instead of providing
primitive instructions (such as addition, multiplication, load, store, etc.) and com-
bining them into programs, he directly transformed all necessary operations into
microinstructions, which were then hardwired using steppers. The number of relays
was minimized, but the price was the reduced flexibility of the machine. In the
1950s, Konrad Zuse produced a special-purpose machine for the optical industry in
which all necessary calculations were again hardwired into the machine.

7.5 The S2 and Automatic Process Control

After the S1 had been completed, Konrad Zuse started a more ambitious project—
automating data entry. The bottleneck for the whole computation was the manual
work needed to measure the wings’ shape, fill out the forms, and enter the
data into the calculator. Furthermore, the data were entered twice to check the
computations. Zuse conceived a mechanism for automatically detecting the position
of the measuring instrument in such a way that the result would be immediately
available to the computing engine. It was a clever idea: the machine would provide
a sequence of pulses to a lever attached to the measuring instrument. Starting from

7.5 The S2 and Automatic Process Control 131

Fig. 7.10 Diagram by
Konrad Zuse of the analog to
digital transformation of the
wing’s measurement (Zuse
1953b)

a known position, the tip of the lever advanced a little with each pulse. When the
tip of the lever had moved a distance proportional to the measurement, it would
make contact with a metal piece, then a current would flow and stop the sequence of
pulses. The analog measurement was then equal to the total number of pulses given
to the instrument multiplied by a small constant (the displacement for each pulse).
Analog measuring was thus transformed into digital counting. Figure 7.10 shows
the sketch sent by Zuse to the patent office. All moving parts have been colored
gray. The spiral wheel labeled 30 rotates a little with each pulse and displaces the
lever in contact at point 17. The metallic contact 14 moves up until it eventually
meets the metallic contact 7, lifted by the measuring tip resting on the wing. Note
that lever 6 is passive. The moving lever is the one shaded in darker gray. The pulses
for rotating the spiral wheel are delivered by the relay plate 26.

A measuring platform was built, with more measuring points than the S1 had
used. Twenty were used for the rear wing, and 24 for the left and right wings, each
of them defining four a, b, c, and d measurements as described above, for a total of
176 measuring points. The measurements were transmitted by cables directly to the
S2, which could perform the computations for corrections immediately (Fig. 7.11).

The S2 had the same basic architecture as the S1. The main difference (other
than the automatic data entry) was the fact that the measuring instruments were read
out twice: once when moving toward the wing and once when moving back to the
parking position. All computations were performed twice, with the direct read-out
and the retracting read-out. The results were compared automatically at the end,
and an alarm was given when they were not the same. Therefore, the S2 checked
its results through this redundant computation. The S2 was never used as intended.
In 1944, it was installed at a Henschel factory in what is now the Czech Republic.

132 7 The S1 and S2: Zuse’s Work for the German Military 1941–1945

Fig. 7.11 Sketch by Konrad Zuse of the connections from the measurement instruments to the S2
(Zuse 1942a)

While Zuse was still assembling the S2, brought directly from Berlin, the order
to dismantle the complete factory arrived. Zuse feverishly continued assembling
the machine although all other equipment around him was being dismantled. The
machine worked as it should and was disassembled for transport shortly after, never
to be seen again (Zuse 1970). It was probably destroyed during the final months of
the war.

7.6 Discussion

The S1 and S2 were probably the first digital computing machines used for factory
process control. The measurement instrument used in the S2 was also probably the
first analog-to-digital converter, although it was never really used in production.
Both machines were, from the computational point of view, subsets of the Z3 built in
1941. They were binary, fixed-point, special-purpose, non-programmable machines.
Their existence remained unknown to the public at large for many years after the
war.

Zuse seems to have been someone fully obsessed with his work, ready to adapt
to any social circumstances, as long as he could continue doing his research. The
scene he later recalled, of the dismantlement of the S2 in 1944, is especially telling:
While the world around him was falling apart, Konrad Zuse was still assembling the
S2 so that he could see it functioning at least once. It did not matter that its original
task, helping to produce better flying bombs, had become obsolete and absurd. This
was a special-purpose machine with no purpose left, but it was his brainchild and he
had to see it work.

References 133

Some contemporaries of Konrad Zuse fared really well after the war. Prof.
Herbert Wagner, his protector and boss at the Henschel Flugzeug-Werke, chief
engineer of the German cruise missiles effort, continued his career in the USA,
working for the Navy right after 1945, and later as a private military contractor for
companies such as Raytheon. In 1951, he started his own company in California.
Wernher von Braun, another obsessive engineer and the mind behind the V2 rockets,
finished his career working for NASA and directing the flight to the moon. Von
Braun had been a member of the SS who knew of the use of slave workers for
building the V2 rockets in the Harz caverns in Germany. Curiously, in 1945, both
von Braun’s and Konrad Zuse’s teams were fleeing from the advancing Soviet army
and arrived in the very same town in the south of Germany. It has been reported
that Zuse avoided contact because he expected von Braun’s group to be tried by the
Allies (Zuse 2000). How little he understood about the politics of world domination!
In 1995, the Technical University of Berlin published a declaration on the occasion
of the 50th anniversary of the war’s end (Anonymous 1995). The declaration
deplores the fact that the university could become a “vehicle of fascist ideology”
and that it helped develop “science and technology that harmed humanity.” Both
Herbert Wagner and Wernher von Braun are mentioned as examples of brilliant yet
“ambivalent” scientists and alumni.

Konrad Zuse was a great engineer, but he was compelled to impart a military
dimension to his research. He did it willingly, a destiny he shared with several of his
fellow scientists toiling in the shadows of Germany’s darkest hour.

References

Anonymous. 1995. Erklärung des Fachbereichs 10, TU Intern, Newsletter.
Rojas R, F. Darius, C. Göktekin, and G. Heyne. 2005. The Reconstruction of Konrad Zuse’s Z3.

IEEE Annals of the History of Computing 27(3): 23–32. https://doi.org/10.1109/MAHC.2005.
48.

Zuse, K. 1942a Modell S1/S2. Skizze der Gesamtanlage und Rechenschema. Available online at
the Zuse Internet Archive.

Zuse, K. 1942b. Programmgesteuerte Rechenmaschine für Flügelvermessung. Available online at
the Zuse Internet Archive.

Zuse, K. 1944a Gerät S2a Rechengerät für Flügelvermessung mit automatischer Ablesbarkeit
der Messuhren. 2. Ausführung des Spezialmodells S2. Available online at the Zuse Internet
Archive.

Zuse, K. 1953a Patentschrift nr. 872645: Verfahren zur Abtastung von Oberflächen und Einrich-
tung zur Durchführung des Verfahrens (für Zuse). Deutsches Museum Digital. http://digital.
deutsches-museum.de/item/NL-207-0998/.

Zuse, K. 1953b Verfahren zur Abtastung von Oberflächen und Einrichtung zur Durchführung des
Verfahrens. German Patent Office, Patent 872645.

Zuse, K. 1970 Der Computer—Mein Lebenswerk. Landsberg: Verlag Moderne Industrie.
Zuse, H. 2000. Konrad Zuse—Seine Rechenmaschinen. In Konrad Zuse—Der Vater des Comput-

ers, ed. Alex Jürgen, Flessner Hermann, Mons Wilhelm, Pauli Kurt, and Zuse Horst. Fulda:
Verlag Parzeller.

https://doi.org/10.1109/MAHC.2005.48
https://doi.org/10.1109/MAHC.2005.48
https://doi.org/10.1109/MAHC.2005.48
https://doi.org/10.1109/MAHC.2005.48
https://doi.org/10.1109/MAHC.2005.48
https://doi.org/10.1109/MAHC.2005.48
https://doi.org/10.1109/MAHC.2005.48
https://doi.org/10.1109/MAHC.2005.48
http://digital.deutsches-museum.de/item/NL-207-0998/
http://digital.deutsches-museum.de/item/NL-207-0998/
http://digital.deutsches-museum.de/item/NL-207-0998/
http://digital.deutsches-museum.de/item/NL-207-0998/
http://digital.deutsches-museum.de/item/NL-207-0998/
http://digital.deutsches-museum.de/item/NL-207-0998/
http://digital.deutsches-museum.de/item/NL-207-0998/
http://digital.deutsches-museum.de/item/NL-207-0998/
http://digital.deutsches-museum.de/item/NL-207-0998/

Chapter 8
The Architecture of the Z4

This chapter describes the programming architecture of Konrad Zuse’s Z4 computer.
The machine’s logic was implemented with telephone relays while the memory was
a mechanical module. The Z4 was the successor to the Z3 machine completed in
1941—it was designed and built in less than 4 years, until German capitulation.
In its first embodiment, the machine featured 12 words of mechanical memory,
two CPU registers, one punched tape reader, and one tape puncher. The keyboard
accepted decimal input, but the internal numerical representation was fully binary,
based on a particular floating-point format. The computer had a relatively large
instruction set for arithmetic operations. In 1949, the Swiss Federal Institute of
Technology (ETH) in Zurich decided to lease-buy the Z4 from Zuse’s fledgling
computer company. An additional punched tape unit for reading auxiliary programs
or tables of numbers was added, together with the instructions necessary for calling
subprograms. The instruction set was extended with a conditional jump.1

8.1 Introduction

The Z4 was a computer designed and built by Konrad Zuse between 1942 and 1945
(the original name was Versuchsmodell 4, or V4). It represents an important mile-
stone in the history of computing in Germany. This machine was the culmination
of the chain of innovations launched by Zuse with the Z1, a mechanical computer
completed in 1938 in Berlin. A further embodiment of the same general architecture
was the Z3, a machine built completely from telephone relays and demonstrated in
1941 (Petzold 1992; Rojas 1998a; Rojas et al. 2014) (see Chap. 5). However, only
the completed Z4 can be understood as the commercial computer Zuse had been
struggling to build for so many years. The Z1, Z3, and Z4 shared a few fundamental

1 Chapter based on Rojas (2021a).

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Rojas, Konrad Zuse’s Early Computers, History of Computing,
https://doi.org/10.1007/978-3-031-39876-6_8

135

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39876-6protect T1	extunderscore 8&domain=pdf
https://doi.org/10.1007/978-3-031-39876-6_8
https://doi.org/10.1007/978-3-031-39876-6_8
https://doi.org/10.1007/978-3-031-39876-6_8
https://doi.org/10.1007/978-3-031-39876-6_8
https://doi.org/10.1007/978-3-031-39876-6_8
https://doi.org/10.1007/978-3-031-39876-6_8
https://doi.org/10.1007/978-3-031-39876-6_8
https://doi.org/10.1007/978-3-031-39876-6_8
https://doi.org/10.1007/978-3-031-39876-6_8
https://doi.org/10.1007/978-3-031-39876-6_8
https://doi.org/10.1007/978-3-031-39876-6_8

136 8 The Architecture of the Z4

principles that we recognize today as constitutive of modern computers: all of them
had a processor distinct from memory, their design was fully binary with decimal
input, computations were performed using floating-point hardware, registers were
available in the CPU, and all operations were microprogrammed. However, the
programs were held in an external medium, i.e., a punched tape. This control tape
could be made to loop just by attaching its two ends. The Z4 was the materialization
of Konrad Zuse’s evolving concept. He had started working on computing machines
long before the war, around 1935–1936, but the bulk of the development effort for
the Z4 was done while the war was raging in Europe (Zuse 1970).

Here, I will describe the architecture of the Z4 mainly from the point of
view of the programmer. This is what is sometimes called the “functional” or
“programming” architecture of a computer. Figure 8.1 shows the Z4 as it used to

Fig. 8.1 The Z4 at Deutsches Museum. The mechanical memory and the control console are
visible in the foreground. In the background, we can see the racks of telephone relays used for
the logic components. The two tape readers are visible in the center of the console. The right side
of the console is used for entering instructions and addresses. The left side is used for entering
decimal numbers, which are displayed in a lamp array similar to the keyboard of a vintage cash
register. Results could be printed with the electric typewriter on the left of the console (Image:
Deutsches Museum)

8.2 Block Architecture 137

stand in the history of computing hall of Deutsches Museum in Munich. The console
is in the front, and the circuits built from relays are in the back.

Konrad Zuse’s relatives and a Berlin instrument maker financed the construction
of the Z1. The Z3 was built while Zuse was working part-time for the Henschel
Flugzeug-Werke making calculations for the wings of airplanes and flying bombs
during World War II. Zuse dedicated the bulk of his working time to his own
company, which was classified as necessary for the war effort. After the successful
demonstration of the Z3, Zuse obtained a loan from an aerodynamics institute
(Deutsche Versuchsanstalt für Luftfahrt) for the development of a more ambitious
machine, that is, the Z4, which was assembled in Zuse’s workshop (Petzold 1992).
The contract was later taken over by the Aviation Ministry, and the machine was to
be delivered to Henschel. A few weeks before the Red Army occupied Berlin, the
Z4 was transported to Bavaria, where it remained until 1949.

8.2 Block Architecture

It is easier to describe the architecture of the Z4 from the point of view of a
programmer by referring to a block diagram containing the essential components
(Fig. 8.2, based on Zuse (1952a)).

Programs for the Z4 were encoded in punched tapes using a binary code. The
main tape reader, At0, could read one instruction at a time and advance the tape.
The control unit transformed each instruction into a sequence of microinstructions
for the central processing unit. The processor contained two registers (OR-I and
OR-II, also called register x and register y, respectively). Data read from memory
were loaded to these registers, and then operations requiring two arguments, such
as addition or multiplication, were executed with their contents. The result was
always rewritten into the first register (OR-I). There was an instruction for storing
the contents of OR-I to a specific memory address. The machine had 64 memory
words, with addresses 0–63.

The processor of the Z4 computed all arithmetic operations using floating
point. The format in memory was similar to alternatives used today. The Z4 used
seven bits of each memory word for encoding the exponent (in two’s complement
representation), 23 bits for encoding the mantissa, and one bit for encoding the sign
of the number (Zuse 1952a). An additional bit was used to flag “special values,”
such as infinity and “indefinite,” or “not a number,” as we would say today (NaN).
Therefore, each word of memory consisted of 32 bits.

The Z4 could be used as a kind of manually triggered calculator: the operator
could enter decimal numbers through the decimal keyboard; these were transformed
into the floating-point representation of the Z4 and loaded to the CPU registers,
first to OR-I, then to OR-II. Then it was possible to start an operation using the
“operations keyboard” (an addition, for example). The result was held in OR-I, and
the user could continue loading numbers and computing. The result in OR-I could

138 8 The Architecture of the Z4

Fig. 8.2 The block architecture of the Z4 with its main components, as explained in the text. The
diagram is based on Zuse (1952a)

be made visible in decimal notation by transferring it to a decimal lamp array (at the
push of a button). It could also be printed using an electric typewriter.

The operator could also use the instructions keyboard to punch a program directly
to a tape. Electronics in the console translated keypunches into the appropriate
binary code for each instruction. This procedure semi-automated the creation of new
programs, which for the Z3 still had to be manually encoded by the programmer in
binary notation. The CPU could also control the tape puncher directly. It was then
possible to store the binary representation of tables of numbers in punched tapes.
The table could be reused later, using the secondary tape reader. The Z4 could
also compute the binary code for program instructions and punch them on a tape
(the program doing this was then a “super program”; today it would be a kind of
compiler).

The secondary tape reader, At1, could be used to execute a subprogram. While
At0 was reading instructions from the main program, control could be transferred
to At1 by the control unit. The operator would have previously loaded a tape from
a library of subprograms in At1. When control returned to At0, a new tape could be
loaded in At1, in case a new subprogram would be needed afterward. At1 could also
be loaded with a table of numbers produced by the tape puncher, and when one of
those numbers was needed during execution, the appropriate instruction could load
the next number available at At1 to one of the registers.

8.3 Architectural Details 139

The Z4 could only use absolute addresses (there was no relative addressing).
Therefore, even if it was feasible to simulate a program loop through the simple
expedient of joining the ends of a tape, it was not possible to make an index variable
point sequentially to a range of addresses, to read them one by one. But in that case,
the tape reader At1 could be used as a kind of substitute, since the tape advanced
one position each time a number was read from it.

If I had to summarize the Z4 (of 1950) for an audience of modern computer
programmers in just a few words, I would say that the Z4 was a programmable
machine featuring 64 words of memory. It had a floating-point CPU with two
registers and used two punched tape readers to read programming code, one of
which could also be used as an external numerical memory or for library tapes. The
bulk of the instruction set was dedicated to arithmetic operations, but subroutines
could be called (one level deep) and (since 1950) there was a conditional jump
instruction. The output of the machine could be visualized in the console using
lamps or could be printed.

8.3 Architectural Details

There are a few idiosyncrasies of the Z4 that it is convenient to explain at this
point. The first surprise is that, while the control part of the Z4 was designed
using telephone relays, the memory was a mechanical apparatus (Zuse 1944c). Zuse
was a master of mechanical design, and his first computer was built using entirely
mechanical components. For the Z4, Zuse returned to a mechanical memory because
telephone relays were expensive and bulky at that time (Zuse 1946a). He reckoned
that he could build the mechanical components necessary for storing memory bits
more economically and needing much less volume using his so-called “mechanical
relays.” His original intention was to build a mechanical memory of up to one
thousand words in a small volume (Fig. 8.3). He wrote in 1943: “A storage unit
with 1000 storage cells occupies a surface of 1 to 2 square meters. For the same
purpose, we would need 45,000 electromagnetic relays (...) For the processor, we
could have a similar reduction of the space needed. If we built mechanical devices
applying the same principles as for pocket watches, we could make them fit in the
format of a typewriter. They could be used in cars, ships and even airplanes” (Zuse
1943a). Both the prescience of these sentences and their naiveté regarding the future
of the technology needed for computers are surprising.

The first iteration of the Z4 contained only one bank of memory for 64 words
(the prototype had only 12). But it required much less space than the equivalent
memory built with relays (the memory of the Z3 used relays). We don’t know
how much calculating speed was lost by reading from a mechanical instead of a
relay memory. However, such loss was lessened by making the memory work in
parallel with the processor. It must be said, though, that the mechanical memory
proved to be reliable enough during the many years the Swiss Federal Institute of
Technology (ETH) operated the machine in Zurich, although it had been the main

140 8 The Architecture of the Z4

Fig. 8.3 Picture of the mechanical memory of the Z4 at the ETH in Zurich (Image: ETH Library)

concern when the machine was leased (Bauer 2008). However, assiduous users of
the machine complained about occasional problems when parts of the mechanical
memory jammed (Bruderer 2012).

Execution times for the important instructions were as follows:

• Addition/Subtraction: 0.5 seconds
• Multiplication: 3 seconds
• Division and square root: 6 seconds
• Memory access: 0.5 seconds (could be overlapped with the execution time of

arithmetic operations)

In typical programs, the Z4 could compute a mix of around 1000 arithmetic oper-
ations per hour (Bauer 2008). Since memory access overlapped with processing, the
slow mechanical memory was not a handicap for the machine.

As explained before, the floating-point format used by Zuse reserved 7 bits for the
exponent, in two’s complement representation, so that the range of possible binary
exponents ran from .−64 to .+63. The mantissa was stored using normalized floating
point, where the leading bit before the binary point is always 1. In total, 23 bits were
needed to store the mantissa in memory, but the representation was expanded to 24
bits in the processor (supplying the leading one). One bit was used for the sign of
the number, and another to signal the presence of a special value so that a total of
32 bits were necessary to store a number in memory. There was a special coding
for zero (which cannot be represented as a normalized floating-point number), and

8.4 The Arithmetic Instruction Set 141

also for infinity and not a number (NaN), which was called an “indefinite value” and
was represented symbolically by Zuse as “?”. Dividing zero by zero, for example,
could produce an indefinite “?”. The special coding for zero, infinity, and NaN is not
documented in the programming manual. We only know that additional bits were
used to differentiate between normal numbers and special values (Zuse 1952a).

To enter a decimal number through the decimal keyboard, required selecting the
specific decimal digits of the number, followed by the exponent. The result was
visualized with an array of nine columns of lamps. Every column had a lamp for the
digits 0–9. The specific decimal digit at each decimal position, for every one of the
nine columns, was lit, and the operator could write down the result produced by the
machine. That lamp array can be seen on the upper left of the console in Fig. 8.1.
There were nine full columns for decimal digits. The position of the decimal point
in the mantissa was indicated with an additional row of lamps under every column
(only one “decimal point” lamp would be switched on). The exponent of the result
was shown with additional lamps. There were also lamps for the sign, and to indicate
underflow, overflow (infinity), or not a number, indicated by a lamp with a question
mark.

8.4 The Arithmetic Instruction Set

The instructions for the Z4 were implemented using microoperations, as in the
Z3. For every operation, there was a control sequencer, which was just a circular
mechanical stepper advancing from one position to the next, like a clock. At every
microstep, different circuits of the processor were energized, and this produced the
information flow in the Z4. Such a microcoded architecture was first developed
for the Z1, while rotary microsteppers were used for the Z3 (Rojas 1997) and Z4.
Microcoding made Zuse’s machines very flexible. New operations could be created
by simply wiring a new stepper.

Every program (punched tape) for the Z4 started with the instruction “St.” The
end of the code was signaled with the instruction “Fin.” The Z4 advanced a new tape
until the first “St” appeared.

The Z4 performed arithmetic operations with one or two arguments. In what
follows, the first register (OR-I) is abbreviated as “x” and the second as “y.” The
operations with a single argument included nine multiplications by constants (the
divisions were transformed into multiplications). The binary representation of the
constants was hardwired in the machine:

.−x 2x 10x .πx .x/2 .x/3 .x/5 .x/7 .x/π

142 8 The Architecture of the Z4

Additional one-argument operations were:

.x2 .
√

x .|x| .sgn(x) . max(0, x)

Two-argument operations were:

.x − y .y − x .x × y .x/y .max(x, y) . min(x, y)

The instructions for reading and writing to memory were “A n” and “S n,” where
n represents the memory address. The first A-instruction would load register OR-I,
while the next A-instruction would load register OR-II. It was also possible to read a
number from the tape reader using the command .↑ m, where m is a number encoded
in the punched tape immediately after the arrow-up command.

When the Z4 was running, it could request decimal input from the operator. The
instruction to request manual input was . ↑. The result contained in register x could
be shown activating the console decimal lamps using the instruction . ↓, or printed
using the instruction D, immediately after . ↓.

There were a few additional special commands used for formatting the output
or for making possible certain combinations of otherwise prohibited instruction
sequences. For example, because the memory was mechanical, the processor would
be too fast. It was not possible to store a result to an address and read the address
immediately. The programmer had to be careful and wait a certain number of
instructions for the memory to be addressable again. This confirms that memory
access was partly asynchronous, relative to the processor, in order not to slow
the latter down. Prohibited sequences of operations, in terms of timing, made the
machine stop during execution (Bauer 2008). An expert programmer reviewed
always the users’ code to make sure that forbidden combinations of instructions
were not present.

And that’s it. This was most of the instruction set used by the Z4 until 1945
(Zuse ca 1945). It was effectively a superset of the instruction set of the Z3 and the
main missing ingredient is, of course, conditional branching and being able to call
subroutines. In fact, the tape reader At1 in Fig. 8.1 was included after 1945, and the
instruction set was extended to deal with conditionals.

Figure 8.4 shows a diagram produced by Zuse’s company before the Z4 was
leased to the ETH in Zurich. The mechanical memory has the label 10. There is
one tape reader (8) and a tape puncher (7). The processor logic was housed in the
relay casings 1–4. There is no electrical typewriter. A planar array of lamps (5b),
organized in rows and columns, could be used to light up a specific lamp under
a sheet of paper, signaling to the operator the name of the variable that had to be
entered if the machine stopped for manual input. The programmer had to take care
to switch on the correct lamp, which was reached by going down in the rows and to
the right, using special instructions embedded in the code stream. This was the state

8.5 Conditionals and Control Transfer 143

Fig. 8.4 The Z4 after 1945 and until 1949 (Zuse 1946c)

of development of the Z4 until 1945 and before the ETH became interested in the
machine.

8.5 Conditionals and Control Transfer

Konrad Zuse explains in his memoirs that the Z4 was transported out of Berlin a few
days before the city fell. The machine spent several years in a barn in Bavaria. The
Swiss mathematician Eduard Stiefel heard about the computer, visited Zuse in 1949,
and was able to see the Z4 working properly. His university, the ETH, decided to
lease the machine, with an option to buy it at the end of 5 years, but important
modifications had to be made beforehand, the main one being the inclusion of
conditional branching. Zuse complied, and in 1950, the Z4 was delivered to the
ETH (Speiser 2000; Bruderer 2012). It was the first commercial computer rented or
sold by any company in continental Europe. During the first months after delivery,
the relays had to be adjusted since the number of switching operations was much
higher than in telephone networks (Petzold 2004).

144 8 The Architecture of the Z4

The conditional jump promised to Stiefel was implemented by Zuse using the
new instruction “Sp” (for “Sprung”, in German). If the contents of register x is . +1,
the punched tape is rolled down until a new start instruction is found in the tape (that
is, “St”). Execution continues normally from that point on.

Before a conditional instruction could be executed, a logic result had to be
computed in register x. For this purpose, there were five arithmetic test operations,
designed to check if a condition is fulfilled. The test “.x =?”, for example, verifies
whether the result of the previous operation was a NaN or not. A successful test fills
the register x with . +1, otherwise with . −1. The test operations were:

.x = 0 .x ≥ 0 .x = ∞ .x =? . |x| ≥ 1

The instruction “Up” was used for transferring control to subroutines. Execution
continued at the current position of the punched tape in At1, and control was
returned to At0 when the instruction “Fin” was reached in the subprogram (Rojas
2014a). There was a conditional variation of Up and Fin that is less relevant to the
discussion here (see the next chapter for a full discussion of subroutine transfer and
conditional jumps in the Z4). Figure 8.5 shows the lamps in the console for the
complete instruction set.

Fig. 8.5 The complete instruction set in the console lamps of the Z4. The last row of logic
operations to the left is not covered in the programming handbook (Image: Deutsches Museum)

8.6 Conclusions 145

After the new conditional and control transfer instructions were introduced,
it was possible to call subroutines. The additional tape reader also allowed the
programmer to use the secondary tape for reading numbers punched by another
program.

However, there is a problem with this implementation of the conditional jump.
The program can only jump down in the code. But programming loops require
reusing previous code so that the jump would have to be taken upward in the
instruction sequence. The solution in the Z4 was to glue the punched tape, making
the code execute in a cycle. The programming manual of the Z4 explains how to
glue the tape and also that a minimum length of 50 cm is required so that the tape
does not jam. If the loop had only a few instructions, several copies of its code had
to be punched, one after the other, until the minimum tape length was obtained. This
is called “loop unrolling,” and it was used in the Z4 so that the punched tape could
meet the minimum specified length.

Zuse’s way of implementing the conditional jump is unsatisfactory, because
either the programmer resigns to have a single loop in the code or special tricks
have to be applied (Rojas 1998b). One trick would be to have the body of the loop
as external code in At1, which can be called successively a fixed number of times
in the main program. The other would be to assign a sequential number to all loops
in a program and arrange them into a single loop of tape. Then, during execution,
we would only enter the loop guarded by a conditional comparison with the value
of a variable placed before the loop body. This is cumbersome, and it would be
interesting to find actual code of the Z4 to learn how users solved this problem.
Note that Charles Babbage, who used punched cards strung together, designed the
conditional jump to go up into the stream of cards so that loops could be easily
implemented (Bromley 2000).

Since the Z4 did not have indirect addressing capabilities, loops that need to
address memory sequentially are difficult to implement. Adding 20 numbers in
memory, for example, would require specifying the 20 addressing instructions
with the consecutive absolute addresses. The alternative would be to use the tape
reader At1 so that the numbers can be read one by one from that reader without
having to specify absolute addresses. The sequencing of the data is then done
automatically when the reader advances. Charles Babbage had the same difficulty
with the Analytical Engine, but he envisioned making the stream of “number cards”
bidirectionally steerable so that interesting combinations of data input could be
achieved when running loops (Rojas 2021b).

8.6 Conclusions

From a contemporary point of view, the architecture of the Z4 can be readily
explained using modern terminology. And that is the biggest surprise when thinking
about this machine and comparing it with the computers designed up to 1945.

146 8 The Architecture of the Z4

The first comparison that comes to mind is with Babbage’s Analytical Engine.
Zuse’s Z1 was actually something like Babbage’s dream materialized, in the sense
that all important arithmetic operations were implemented using only mechanical
means. The Analytical Engine went further, though, since it included conditional
instructions, so important for universal computation. Curiously, Zuse did not include
the conditional jump as a programming instruction, neither in the Z1, the Z3, nor
in the Z4 (until 1945). Zuse referred to the programs that could be written in this
way as “rigid” because he was fully aware that conditional instructions could make
programming “flexible.” Curiously, the microcode in all his machines was based on
conditional execution.

The Z4 was a floating-point machine. Neither the Harvard Mark I nor the ENIAC
used floating point. Both used a fixed-point representation. Neither the Mark I nor
the ENIAC were fully binary. The internal representation of numbers was decimal,
using gears in the case of the Mark I, and arrays of vacuum tubes in the case of the
ENIAC. The Z1 was already completely binary when it was finished in 1938.

The separation of memory and processor is also complete and pervasive in Zuse’s
machines. In the Mark I and the ENIAC, memory and processor are still intertwined,
since memory words are used as accumulators for arithmetic operations. Even the
Analytical Engine is superior in that respect, since the storage was completely
separated from the mill, and they even ran independently, each one using its own
set of punched cards. Curiously, the ENIAC did not execute code. The code was
embedded in the way the machine was hardwired, and the connections had to be
rearranged for each new problem.

As we can see, all of these machines brought something new in terms of the
computing architectures that would become possible in later years. At some point,
all of them have been called the “first computer.” However, I think that a comparison
of their architectures confirms that we can only talk about the “first computers,” in
the plural, since the dawn of the third industrial revolution was an endeavor that
went beyond national boundaries. The start of the computer age was a collective
enterprise whose first creative spark flashed during the heyday of the first industrial
revolution with the inception of the Analytical Engine.

References

Bauer, F.L. 2008. Über “Episoden aus den Anfängen der Informatik an der ETH“ von A. Speiser.
Informatik-Spektrum 31(6): 600–612. https://doi.org/10.1007/s00287-008-0291-8.

Bromley, A.G. 2000. Babbage’s analytical engine plans 28 and 28a – The programmer’s interface.
Annals of the History of Computing 22(4): 5–19. https://doi.org/10.1109/85.887986.

Bruderer, H. 2012. Konrad Zuse und die Schweiz: Wer hat den Computer erfunden? Munich:
Oldenbourg Wissenschaftsverlag. https://doi.org/10.1524/9783486716658.

Petzold, H. 1992. Moderne Rechenkünstler: die Industrialisierung der Rechentechnik in Deutsch-
land. Munich: C.H. Beck.

Petzold, H. 2004. Hardwaretechnologische Alternativen bei Konrad Zuse. In Geschichten der
Informatik: Visionen, Paradigmen, Leitmotive, ed. HD Hellige. Berlin, Heidelberg: Springer.
https://doi.org/0.1007/978-3-642-18631-8-5.

https://doi.org/10.1007/s00287-008-0291-8
https://doi.org/10.1007/s00287-008-0291-8
https://doi.org/10.1007/s00287-008-0291-8
https://doi.org/10.1007/s00287-008-0291-8
https://doi.org/10.1007/s00287-008-0291-8
https://doi.org/10.1007/s00287-008-0291-8
https://doi.org/10.1007/s00287-008-0291-8
https://doi.org/10.1007/s00287-008-0291-8
https://doi.org/10.1007/s00287-008-0291-8
https://doi.org/10.1109/85.887986
https://doi.org/10.1109/85.887986
https://doi.org/10.1109/85.887986
https://doi.org/10.1109/85.887986
https://doi.org/10.1109/85.887986
https://doi.org/10.1109/85.887986
https://doi.org/10.1109/85.887986
https://doi.org/10.1524/9783486716658
https://doi.org/10.1524/9783486716658
https://doi.org/10.1524/9783486716658
https://doi.org/10.1524/9783486716658
https://doi.org/10.1524/9783486716658
https://doi.org/10.1524/9783486716658
https://doi.org/0.1007/978-3-642-18631-8-5
https://doi.org/0.1007/978-3-642-18631-8-5
https://doi.org/0.1007/978-3-642-18631-8-5
https://doi.org/0.1007/978-3-642-18631-8-5
https://doi.org/0.1007/978-3-642-18631-8-5
https://doi.org/0.1007/978-3-642-18631-8-5
https://doi.org/0.1007/978-3-642-18631-8-5
https://doi.org/0.1007/978-3-642-18631-8-5
https://doi.org/0.1007/978-3-642-18631-8-5
https://doi.org/0.1007/978-3-642-18631-8-5
https://doi.org/0.1007/978-3-642-18631-8-5

References 147

Rojas, R. 1997. Konrad Zuse’s legacy: The architecture of the Z1 and Z3. IEEE Annals of the
History of Computing 19(2): 5–16. https://doi.org/10.1109/85.586067.

Rojas, R. 1998b. How to make Konrad Zuse’s Z3 a universal computer. IEEE Annals of the History
of Computing 20(3): 51–54. https://doi.org/10.1109/85.707574.

Rojas, R. 2014a. Konrad Zuse und der bedingte Sprung. Informatik-Spektrum 37: 50—53. https://
doi.org/10.1007/s00287-013-0717-9.

Rojas, R. 2021a. The architecture of Konrad Zuse’s Z4 computer. In IEEE 7th IEEE History of
Electrotechnology Conference, Moscow, 43–47.

Rojas, R. 2021b. The computer programs of Charles Babbage. IEEE Annals of the History of
Computing 43(1): 6–18. https://doi.org/10.1109/MAHC.2020.3045717.

Rojas, R., Röder, J., and H. Nguyen. 2014. Die Prozessorarchitektur der Rechenmaschine Z1.
Informatik-Spektrum 37(4): 341–347. https://doi.org/10.1007/s00287-013-0749-1.

Rojas, R. 1998a. Die Rechenmaschinen von Konrad Zuse. Berlin: Springer-Verlag. https://doi.org/
10.1007/978-3-642-71944-8.

Speiser, A. 2000. Konrad Zuse’s Z4: Architecture, programming, and modifications at the ETH
Zurich. In The first computers - history and architectures, eds. R. Rojas, U. Hashagen
Cambridge, MA: MIT Press.

Zuse, K. 1943a. Rechenplangesteuerte Rechengeräte für technische und wissenschaftliche Rech-
nungen. Deutsches Museum Digital. http://digital.deutsches-museum.de/item/NL-207-0217/

Zuse, K. 1944c. Notizen zu den Schaltungen. Available online at the Zuse Internet Archive.
Zuse, K. 1946a. Kurze Beschreibung des mechanischen Speicherwerks der Firma Zuse. Deutsches

Museum Digital. http://digital.deutsches-museum.de/item/NL-207-0249/
Zuse, K. 1946c. Zuse Calculators. Available online at the Zuse Internet Archive.
Zuse, K. 1952a. Bedienungsanweisung für Zuse Z4. Zurich: ETH Zurich. https://doi.org/10.7891/

e-manuscripta-98601.
Zuse, K. 1970. Der computer – Mein Lebenswerk. Landsberg: Verlag Moderne Industrie.
Zuse, K. ca 1945. Rechenpläne für das Rechengerät V4. Available online at the Zuse Internet

Archive.

https://doi.org/10.1109/85.586067
https://doi.org/10.1109/85.586067
https://doi.org/10.1109/85.586067
https://doi.org/10.1109/85.586067
https://doi.org/10.1109/85.586067
https://doi.org/10.1109/85.586067
https://doi.org/10.1109/85.586067
https://doi.org/10.1109/85.707574
https://doi.org/10.1109/85.707574
https://doi.org/10.1109/85.707574
https://doi.org/10.1109/85.707574
https://doi.org/10.1109/85.707574
https://doi.org/10.1109/85.707574
https://doi.org/10.1109/85.707574
https://doi.org/10.1007/s00287-013-0717-9
https://doi.org/10.1007/s00287-013-0717-9
https://doi.org/10.1007/s00287-013-0717-9
https://doi.org/10.1007/s00287-013-0717-9
https://doi.org/10.1007/s00287-013-0717-9
https://doi.org/10.1007/s00287-013-0717-9
https://doi.org/10.1007/s00287-013-0717-9
https://doi.org/10.1007/s00287-013-0717-9
https://doi.org/10.1007/s00287-013-0717-9
https://doi.org/10.1109/MAHC.2020.3045717
https://doi.org/10.1109/MAHC.2020.3045717
https://doi.org/10.1109/MAHC.2020.3045717
https://doi.org/10.1109/MAHC.2020.3045717
https://doi.org/10.1109/MAHC.2020.3045717
https://doi.org/10.1109/MAHC.2020.3045717
https://doi.org/10.1109/MAHC.2020.3045717
https://doi.org/10.1109/MAHC.2020.3045717
https://doi.org/10.1007/s00287-013-0749-1
https://doi.org/10.1007/s00287-013-0749-1
https://doi.org/10.1007/s00287-013-0749-1
https://doi.org/10.1007/s00287-013-0749-1
https://doi.org/10.1007/s00287-013-0749-1
https://doi.org/10.1007/s00287-013-0749-1
https://doi.org/10.1007/s00287-013-0749-1
https://doi.org/10.1007/s00287-013-0749-1
https://doi.org/10.1007/s00287-013-0749-1
https://doi.org/10.1007/978-3-642-71944-8
https://doi.org/10.1007/978-3-642-71944-8
https://doi.org/10.1007/978-3-642-71944-8
https://doi.org/10.1007/978-3-642-71944-8
https://doi.org/10.1007/978-3-642-71944-8
https://doi.org/10.1007/978-3-642-71944-8
https://doi.org/10.1007/978-3-642-71944-8
https://doi.org/10.1007/978-3-642-71944-8
https://doi.org/10.1007/978-3-642-71944-8
https://doi.org/10.1007/978-3-642-71944-8
http://digital.deutsches-museum.de/item/NL-207-0217/
http://digital.deutsches-museum.de/item/NL-207-0217/
http://digital.deutsches-museum.de/item/NL-207-0217/
http://digital.deutsches-museum.de/item/NL-207-0217/
http://digital.deutsches-museum.de/item/NL-207-0217/
http://digital.deutsches-museum.de/item/NL-207-0217/
http://digital.deutsches-museum.de/item/NL-207-0217/
http://digital.deutsches-museum.de/item/NL-207-0217/
http://digital.deutsches-museum.de/item/NL-207-0217/
http://digital.deutsches-museum.de/item/NL-207-0249/
http://digital.deutsches-museum.de/item/NL-207-0249/
http://digital.deutsches-museum.de/item/NL-207-0249/
http://digital.deutsches-museum.de/item/NL-207-0249/
http://digital.deutsches-museum.de/item/NL-207-0249/
http://digital.deutsches-museum.de/item/NL-207-0249/
http://digital.deutsches-museum.de/item/NL-207-0249/
http://digital.deutsches-museum.de/item/NL-207-0249/
http://digital.deutsches-museum.de/item/NL-207-0249/
https://doi.org/10.7891/e-manuscripta-98601
https://doi.org/10.7891/e-manuscripta-98601
https://doi.org/10.7891/e-manuscripta-98601
https://doi.org/10.7891/e-manuscripta-98601
https://doi.org/10.7891/e-manuscripta-98601
https://doi.org/10.7891/e-manuscripta-98601
https://doi.org/10.7891/e-manuscripta-98601
https://doi.org/10.7891/e-manuscripta-98601

Chapter 9
The Conditional Jump: Making the Z4
Universal

This chapter describes the conditional instructions that Konrad Zuse retrofitted
to the instruction set of the Z4 around 1949, including the conditional jump.
The instruction set upgrade for the Z4 was a request from the mathematicians at
the ETH Zurich, who needed the increased functionality for iterative numerical
computations. If the truth value stored in a register was “true,” the conditional
jump would bypass all instructions further down in the tape containing the program
until a “start” marker in the code was reached. If the tested truth value was false,
the jump instruction was simply ignored. Some simple programming examples help
to understand the operational semantics of the conditional instructions of the Z4.1

9.1 Coding for the Z4

It is well known that none of the first calculating machines built by Konrad Zuse
featured the conditional jump in their instruction sets. The Z1 (1936–1938), the Z3
(1940–1941), and the Z4 (1942–1945) were originally designed to execute fixed
sequences of arithmetic operations (Rojas, 1998a), i.e., the machines could add,
subtract, multiply, divide, and process some other arithmetic instructions, one after
another. Working in combination with a memory unit, the processor could thus
evaluate complex arithmetic expressions. Commands for input and output were also
available—only the conditional jump was missing, so that both the Z3 and Z4 could
be classified as full-fledged computers (Rojas, 1997).

The programs for these Zuse machines were punched on a tape using binary
coding. The instructions were read and executed one at a time. Of course, the
program could not be changed while the machine was running—the most that could
be done was to tie the punched tape into a loop that could be run repeatedly.

1 Chapter based on Rojas (2014a).

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Rojas, Konrad Zuse’s Early Computers, History of Computing,
https://doi.org/10.1007/978-3-031-39876-6_9

149

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39876-6protect T1	extunderscore 9&domain=pdf
https://doi.org/10.1007/978-3-031-39876-6_9
https://doi.org/10.1007/978-3-031-39876-6_9
https://doi.org/10.1007/978-3-031-39876-6_9
https://doi.org/10.1007/978-3-031-39876-6_9
https://doi.org/10.1007/978-3-031-39876-6_9
https://doi.org/10.1007/978-3-031-39876-6_9
https://doi.org/10.1007/978-3-031-39876-6_9
https://doi.org/10.1007/978-3-031-39876-6_9
https://doi.org/10.1007/978-3-031-39876-6_9
https://doi.org/10.1007/978-3-031-39876-6_9
https://doi.org/10.1007/978-3-031-39876-6_9

150 9 The Conditional Jump: Making the Z4 Universal

I have shown elsewhere that a universal computer can be implemented without
a conditional jump by simulating the IF command with such an arithmetic loop
(Rojas, 1998b) (see Chap. 6). The whole approach is theoretically conceivable, but
impractical, due to the enormous growth of the program code (and thus the length
of the punched tape).

The Z4 had to be enhanced with the conditional jump as a precondition for
its leasing by ETH Zurich (Zuse, 1970; Bruderer, 2012). The instruction set was
adapted to the needs of numerical analysis at the request of the ETH mathemati-
cians: thus, the jump and other conditional instructions were implemented. It was
then possible to change the order of calculations adaptively, as is common in any
programming language today.

This chapter describes the implementation of the conditional jump for the
Z4, the first commercial computer in mainland Europe. The chapter is based on
documentation of an exhibition at the ETH from 1981 (Anonymous, 1981). We
know for sure that conditional commands were not introduced in the Z4 until after
1945 (Zuse, 1970).

For the following description, it is sufficient to know that the processor of the Z4
has two floating-point registers (called OR-I and OR-II) and 64 memory cells. All
arithmetic operations use these two registers and return the result to OR-I.

9.2 The Punched Tape of the Z4

Two paper tape readers were included in the Z4 delivered to ETH (Zuse had thought
of even more readers, but did not implement them for this project). In the first reader
(called At0, for “Abtaster Null”), the main program could run until an Up command
handed over control to the second punched tape reader (At1), as we will discuss
below. It was then possible to call subprograms from a main program.

The program code started with the pseudo command St (a pseudo command is
just a symbol in the sequence of punched cards). A program ended with the Fin
command. Upon reaching Fin in the main program, a red light was turned on, to
alert the operator about the end of the whole computation.

The Up command passed control from the main program being read by the
At0 unit to the subprogram at At1. When control was handed over to At1, its
punched tape was advanced to the nearest St. The new instruction sequence for
the processor now came from At1. Upon reaching Fin, control was given back to
At0. All subprogram parameters and results could be transferred via the contents of
memory cells (there was only one global memory with addresses 0 to 63). However,
address 63 was special; it was used to hand back an error code. Since the Z4
worked with floating-point numbers, some arithmetic exceptions (infinite result or
not a number) could be stored in special bits of the exponent, as in today’s IEEE
floating-point format. After a subprogram gave control back, address 63 could be
tested for exceptions. For example, the Z4 command “.x =?” checked whether the
content of address 63 (previously loaded in OR-I) was a valid floating-point number.

9.3 Conditional Commands 151

Fig. 9.1 Subroutine
invocations. Scanner At0
(left) passes control twice to
scanner At1 (right). The
subroutines are called in the
order in which they are
present in the punched tape
reader

Therefore, arithmetic exceptions in subprograms could be reported back to the main
program. Figure 9.1 shows a diagram of the execution flow for two subprogram
calls. The order in which they were executed resulted from the current position of
the punched tape in At1.

9.3 Conditional Commands

Zuse encoded truth values using two integers, namely . −1 for false and . +1 for true.
The logical operations of the Z4 stored the truth value of a result in OR-I. For
example, the operation “.x = 0” stores . +1 in OR-I if OR-I is equal to zero, otherwise
a . −1 is stored. Other logical operations were, for example, the comparison of OR-I
with 1, or testing if OR-I was greater than or equal to zero. Conditional commands
derived their actions from the resulting truth values.

The Up’ command (with an apostrophe) was equivalent to Up but executed
conditionally. If the truth value in OR-I was false, Up’ was skipped; if OR-I was
true, control was passed to the subprogram in At1.

The Fin’ command in the main program was equivalent to Fin, but was skipped if
the current logical value in OR-I was false. However, if OR-I was true, the machine
stopped completely at Fin’. In this sense, an executed Fin’ in a subprogram was
like a Fin in the main program. This asymmetry of the Fin commands was not
satisfactory in the Z4, but Zuse must have had reasons for this approach. Obviously,
an Up’ command should not be used in subprograms in At1, since there was no third
punched tape reader in the Z4 (Fig. 9.2).

152 9 The Conditional Jump: Making the Z4 Universal

Fig. 9.2 Subprogram call.
Reader At0 gives control to
reader At1. The first Up’
command is not executed
(OR-I contained . −1), only
the second Up’ is. The first
two Fin’ pseudocommands
are not executed (since OR-I
contained . −1 at that
moment). Only the Fin
command at the end transfers
control back to the main
program

9.4 The Conditional Jump

And finally: the conditional jump. It was an odyssey of almost 14 years (1936–1950)
until the first conditional jump in a Zuse machine saw the light of day (Fig. 9.3). The
Z4 command Spr in a program or subprogram caused all subsequent commands to
be skipped until the next start mark (St) (Ambros Speiser called this command Spr’,
a slight difference with the Z4 programming handbook (Bauer, 2008)). This means
that the command pair Spr-St acts like a bracket: everything in between is only

Fig. 9.3 The first Up
command is skipped; the
second is not. In the
subprogram, the two Fin’
instructions are not executed.
The appropriate logical
values in OR-I for this are:
true, false in the main
program, and false, false in
the subprogram

9.5 The Competitors 153

executed if the register OR-I contains a . −1. Otherwise all the bracketed commands
are skipped.

Other subtleties of the instruction set are not relevant for us (for example, there
were forbidden sequences of instructions). We can only underline how simple Zuse’s
solution for the introduction of conditional commands was. This conditional jump
does not refer to addresses (it is not like a GOTO n), i.e., the program cannot jump
“backward” in the punched tape, only forward to the next St pseudoinstruction.
The commands Up’ and Fin’ are similarly easy to implement: you can ignore
them depending on the truth value in OR-I. Anything can be programmed with
such additional commands. We noted above that the subprograms are called in the
order of their presence in the punched tape read by At1. However, if we want
to assign identifiers to the subprograms, so that, for example, we can call any
subprogram between 1 and 6, this is easily done. To that end, we make a loop
with the subprogram tape and store the subprogram number in address 0. When
the subprogram code starts, we test at the beginning of the successive subprograms
if the number in address 0 corresponds to their assigned number. If it does, that
subprogram is executed until Fin. If not, that subprogram is skipped up to the next
St mark, which corresponds to the next subprogram.

9.5 The Competitors

Today, almost eight decades after 1945, it seems odd that Konrad Zuse implemented
so late the conditional jump in his machines. However, one should not ignore the
state of computing at the time and the work of the competition. Even the American
ENIAC, often praised as the world’s first electronic calculator, did not initially have
a conditional jump (Goldstine and Goldstine, 1996). This was only implemented
later, using a trick: data lines that transported pulses were repurposed as control
lines (for starting a computation in an accumulator), and so a sign bit could start
a chain of arithmetic operations. This had not been foreseen at the beginning of
the design. Also, John Atanasoff’s machine was built only for a fixed sequence
of operations (the Gauss algorithm for solving linear equations). In the Turing
machine of 1936, control jumps are implicit in all state transitions. However, if a
Universal Turing Machine simulates a specific Turing machine, encoded in its tape,
conditional operations have to laboriously skip program and data cells in the tape,
one by one.

It is interesting to add that Charles Babbage’s Analytical Engine handled the
conditional jump very much as Zuse did, testing a memory address and skipping
instructions stored in punched cards, until a mark was reached. However, Babbage’s
conditional jump was provided for jumping up in the sequence of instructions, that
is, for implementing iterative loops. In the case of the Z4, iterative loops had to
be implemented as successive subroutine calls (using loop-unrolling) or by joining
both ends of the punched tape.

154 9 The Conditional Jump: Making the Z4 Universal

It is sometimes easy to criticize the short-sightedness of inventors of the past.
But you have to remember that those researchers were busy creating something
completely new. The computer was not born like Athena from the head of Zeus,
complete and armored. The development of the computer was not a single flash of
inspiration—it was an extended revolutionary epoch that continues to this day.

References

Anonymous. 1981. Documentation: Konrad Zuse and the Early Days of Scientific Computing at
the ETH. ETH Zurich, 17.6.-15.7.1981, the documentation contains the list of commands for
the Z4.

Bauer, F.L. 2008. Über “Episoden aus den Anfängen der Informatik an der ETH” von A. Speiser.
Informatik-Spektrum 31(6): 600–612. https://doi.org/10.1007/s00287-008-0291-8.

Bruderer, H. 2012. Konrad Zuse und die Schweiz: Wer hat den Computer erfunden? Munich:
Oldenbourg Wissenschaftsverlag. https://doi.org/10.1524/9783486716658.

Goldstine, H.H., and A. Goldstine. 1996. The electronic numerical integrator and computer
(ENIAC). Annals of the History of Computing 18(1): 10–16. https://doi.org/10.1109/85.
476557.

Rojas, R. 1997. Konrad Zuse’s legacy: The architecture of the Z1 and Z3. IEEE Annals of the
History of Computing 19(2): 5–16. https://doi.org/10.1109/85.586067.

Rojas, R. 1998a. Die Rechenmaschinen von Konrad Zuse. Berlin: Springer-Verlag. https://doi.org/
10.1007/978-3-642-71944-8.

Rojas, R. 1998b. How to make Konrad Zuse’s Z3 a universal computer. IEEE Annals of the History
of Computing 20(3): 51–54. https://doi.org/10.1109/85.707574.

Rojas, R. 2014a. Konrad Zuse und der bedingte Sprung. Informatik-Spektrum 37: 50–53. https://
doi.org/10.1007/s00287-013-0717-9.

Zuse, K. 1970. Der computer – Mein Lebenswerk. Landsberg: Verlag Moderne Industrie.

https://doi.org/10.1007/s00287-008-0291-8
https://doi.org/10.1007/s00287-008-0291-8
https://doi.org/10.1007/s00287-008-0291-8
https://doi.org/10.1007/s00287-008-0291-8
https://doi.org/10.1007/s00287-008-0291-8
https://doi.org/10.1007/s00287-008-0291-8
https://doi.org/10.1007/s00287-008-0291-8
https://doi.org/10.1007/s00287-008-0291-8
https://doi.org/10.1007/s00287-008-0291-8
https://doi.org/10.1524/9783486716658
https://doi.org/10.1524/9783486716658
https://doi.org/10.1524/9783486716658
https://doi.org/10.1524/9783486716658
https://doi.org/10.1524/9783486716658
https://doi.org/10.1524/9783486716658
https://doi.org/10.1109/85.476557
https://doi.org/10.1109/85.476557
https://doi.org/10.1109/85.476557
https://doi.org/10.1109/85.476557
https://doi.org/10.1109/85.476557
https://doi.org/10.1109/85.476557
https://doi.org/10.1109/85.476557
https://doi.org/10.1109/85.586067
https://doi.org/10.1109/85.586067
https://doi.org/10.1109/85.586067
https://doi.org/10.1109/85.586067
https://doi.org/10.1109/85.586067
https://doi.org/10.1109/85.586067
https://doi.org/10.1109/85.586067
https://doi.org/10.1007/978-3-642-71944-8
https://doi.org/10.1007/978-3-642-71944-8
https://doi.org/10.1007/978-3-642-71944-8
https://doi.org/10.1007/978-3-642-71944-8
https://doi.org/10.1007/978-3-642-71944-8
https://doi.org/10.1007/978-3-642-71944-8
https://doi.org/10.1007/978-3-642-71944-8
https://doi.org/10.1007/978-3-642-71944-8
https://doi.org/10.1007/978-3-642-71944-8
https://doi.org/10.1007/978-3-642-71944-8
https://doi.org/10.1109/85.707574
https://doi.org/10.1109/85.707574
https://doi.org/10.1109/85.707574
https://doi.org/10.1109/85.707574
https://doi.org/10.1109/85.707574
https://doi.org/10.1109/85.707574
https://doi.org/10.1109/85.707574
https://doi.org/10.1007/s00287-013-0717-9
https://doi.org/10.1007/s00287-013-0717-9
https://doi.org/10.1007/s00287-013-0717-9
https://doi.org/10.1007/s00287-013-0717-9
https://doi.org/10.1007/s00287-013-0717-9
https://doi.org/10.1007/s00287-013-0717-9
https://doi.org/10.1007/s00287-013-0717-9
https://doi.org/10.1007/s00287-013-0717-9
https://doi.org/10.1007/s00287-013-0717-9

Chapter 10
Plankalkül

This chapter describes the first implementation of Plankalkül, the programming
symbolism invented by Konrad Zuse in 1945. Plankalkül is both a high-level
imperative programming language and a logic specification notation. In Plankalkül,
programs can define functions that can be called non-recursively in other programs.
There are no preliminary variable declarations: the type of a variable is specified
when it is used. The main imperative constructs are: variable assignment, arithmetic
and logic operations, guarded commands, and While loops. Plankalkül is also
declarative: some special list, set-theoretic, and logic functions are part of the
language definition. Plankalkül uses a two-dimensional layout that defies traditional
parsers. This and some inconsistencies in the original definition were the main
obstacles to its implementation.

At the beginning of this century, our team fixed some inconsistencies in
Plankalkül and identified a powerful subset of the language for which we wrote
a syntax-driven editor, a parser, and a runtime system. The code was written in Java
and could run on any computer connected to the Internet (until Java applets became
obsolete). The editor can generate only syntactically valid programs following
Zuse’s original two-dimensional layout, even when the programmer is first learning
the language. More than 55 years after its conception, the first Plankalkül programs
ran in February 2000.1

10.1 Introduction

Konrad Zuse completed the design of the high-level programming language
Plankalkül (Calculus of Programs) in 1945, after leaving Berlin at the end of
World War II. The original manuscript was published in revised form in Zuse

1 This chapter is based on Rojas et al. (2000).

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Rojas, Konrad Zuse’s Early Computers, History of Computing,
https://doi.org/10.1007/978-3-031-39876-6_10

155

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39876-6protect T1	extunderscore 10&domain=pdf
https://doi.org/10.1007/978-3-031-39876-6_10
https://doi.org/10.1007/978-3-031-39876-6_10
https://doi.org/10.1007/978-3-031-39876-6_10
https://doi.org/10.1007/978-3-031-39876-6_10
https://doi.org/10.1007/978-3-031-39876-6_10
https://doi.org/10.1007/978-3-031-39876-6_10
https://doi.org/10.1007/978-3-031-39876-6_10
https://doi.org/10.1007/978-3-031-39876-6_10
https://doi.org/10.1007/978-3-031-39876-6_10
https://doi.org/10.1007/978-3-031-39876-6_10
https://doi.org/10.1007/978-3-031-39876-6_10

156 10 Plankalkül

(1972). Plankalkül was his special project for several years, as it was intended to be
part of a doctoral thesis. Anyone who has had the opportunity to study the original
definition of Plankalkül is struck by its modern flavor and powerful constructs—as
if it had been created much later than 1945. Most surprising, however, is the fact
that at the time that Konrad Zuse finished his Plankalkül document, the only two
working computers in the world were the ENIAC and the Harvard Mark I (and
some other special-purpose machines, such as the computers built at Bell Labs and
the British cryptographic machines). None of them used a compiler or a formula
translator—the ENIAC had to be rewired for every different problem.

Between 1936 and 1945, Zuse built three programmable computers that embod-
ied the same general computating principles. The Z1 (1938), the Z3 (1941), and
the Z4 (1945) were all binary “algebraic” floating-point machines, with a memory
separate from the processor, and a program stored in punched tape. They were
programmed in machine language, as were the first American or British computers.
However, by his own account, Zuse very soon realized that his “combinatorics of
conditionals” (as he called it) was identical to propositional calculus, and later on
he conceived a simpler but powerful machine, the “logic machine,” which would be
able to solve both numerical and symbolic processing problems.

Although Zuse applied for a patent for the logic machine, he never really finished
designing it. The logic computer was minimalistic and similar to a Turing machine:
it consisted of a memory with one-bit words and a processor capable of executing
only the logic operations AND, OR, and NOT with one-bit operands. The machine
would represent the lowest level in a computational hierarchy with Plankalkül at the
top.

In 1942/43, Zuse began writing a PhD dissertation. The draft describes the
predicate logic “to make it accessible for engineers” and goes into great detail
about its implementation with mechanical and electrical relays. Konrad Zuse’s
planned thesis, never submitted, is in fact one of the first treatises on the systematic
construction of computer circuits (Shannon did something similar in 1936). He
describes how to map logic formulas to relay circuits and vice versa. He considers
the problem of minimizing circuits and how to overlap them in order to use fewer
components. He explains clocked circuits and everything else that is needed to build
a computer.

The continuation of this unfinished work is the Plankalkül document, written
between 1943 and 1945. Prevented from working on the Z4, which he moved
from Berlin to Hinterstein, a small town in the Bavarian Alps, Zuse sat down to
summarize how he thought logic machines of the future should be programmed. His
original intention was that Plankalkül would be the basis for a complete “calculus
of programs,” that is, a method for deriving programs from other programs. The
initial notation for the Plankalkül was based on the predicate calculus and from
there Zuse derived the imperative constructs needed to execute the “explicit form”

10.2 Origins of the Plankalkül 157

of the computation. In modern terminology, the Plankalkül has the following main
features:

• declarative predicate logic and set-theoretic instructions are part of the language
• it is a high-level imperative programming language (an algorithmic language)
• it is also a specification language for computations using the predicate calculus
• programs are reusable functions
• functions are not recursive
• only call by value is used in function invocation
• variables are local to functions (programs)
• it is a typed language
• the fundamental data types are multidimensional arrays and tuples of arrays
• the type of the variables does not need to be declared in a special header
• conditionals are processed using guarded commands
• there is a WHILE construct for open iteration
• there is no GOTO construct

The main non-modern feature of Plankalkül is its mixed one-dimensional and two-
dimensional layout, which has puzzled many readers of the original document.
Variables are written using four lines instead of using brackets to enclose indices.
It may well be that this peculiar layout was one of the main deterrents to the
development of a compiler or interpreter for the language in the first years after
its definition.

10.2 Origins of the Plankalkül

During the time that Zuse was building the Z4 machine, he began to write a
long document that he intended to be his doctoral thesis, possibly under the
supervision of Prof. Alwin Walther at Darmstadt. The draft had a long title:
“Contributions to a theory of general computation, with special consideration of the
propositional calculus and its application to relay circuits.”2 The document explains
the propositional calculus and how logic formulas can be mapped to logic circuits
and vice versa. He examines the logic operations, the reduction of logic formulas to
a normal form, and the duality principle present in DeMorgan’s laws that allow the
engineer to transform logic circuits into equivalent dual circuits.

In his draft, Zuse makes a distinction between “implicit” and “explicit” algebraic
problems. If we only write the quadratic expression .ax2 + bx + c = 0, and ask for
the roots of the polynomial, we have an implicit representation of the problem. If
we derive the formula for the roots of the quadratic polynomial using the rules of
algebra, we then have an explicit computational procedure for finding them.

2 Ansätze einer Theorie des allgemeinen Rechnens unter besonderer Berücksichtigung des Aus-
sagenkalküls und dessen Anwendung auf Relaisschaltungen

158 10 Plankalkül

Zuse then considers the equivalent formulation for logic problems. Given a logic
formula, how do we find the combination of logic truth values for the variables that
makes the whole formula true? This is nowadays called the satisfiability problem.
Zuse gives an example that shows that even for very simple formulas, trying to find
a binary assignment of logic variables leads us to consider, in the end, all possible
combinations of binary assignments for those variables. Today we know that the
satisfiability problem for logic expressions is NP-complete, that is, there is no
known algorithm that can solve the problem in polynomial time and the problem is
equivalent to many other hard problems. Therefore, Zuse does not delve deeper into
this issue and continues developing an abstract notation for relay circuits, which is
used to examine the quasi-automatic “synthesis” of circuits given a logic expression
for binary variables. The abstract relay notation used by Zuse is the same that he
developed for the circuits of the Z1 and his other computers, also for his patent
applications.

All this is relevant for understanding Plankalkül better. In the draft of the doctoral
thesis, Zuse considers the logic quantifiers “for all” and “there exists” and thus
the transition to the predicate calculus. He then talks about “rigid” and “non-rigid”
programs. The first kind of program works with a fixed number of computations and
without conditional branches. For example, given a logic formula of some variables,
and the binary value of those variables, the truth value of the formula can be found
simply by computing the sequence of logic operations and their relationships. But
in a “non-rigid” (or “free”) program, the computational path can arrive at junctions
that determine alternative computational paths. At this point, Zuse’s examples are
more related to the predicate calculus rather than propositional logic.

In this sense, the Plankalkül draft of 1945 is only a continuation of the research
begun in the dissertation draft. While propositional logic is the main topic in the
first book of the dissertation draft, the predicate calculus with quantifiers becomes
now the field of research (Zuse, 1945).

In the Plankalkül draft, Zuse writes that his intention was to develop a complete
calculus for programs (hence the name of the document), but he also explains
that this could not be fully achieved. He mentions that obtaining explicit logic
expressions from implicit logic formulas is much harder than in the case of algebraic
problems and that he did not pursue the subject further. In modern terminology,
we would say that he uses the formalism of predicate logic to write specifications
for computations, but does not attempt to prove expressions automatically. He thus
distinguishes between the “implicit” and the “explicit form” of Plankalkül. The
latter is the imperative form, which is similar to a high-level imperative language,
as we describe in the following sections. The former is the logic expression that
represents a program. If we ask for all elements x in the set V that satisfy a function
.f (x), we would write the formula .(x)(x ∈ V, f (x)) (using Hilbert’s notation).

Zuse would have liked to have a general procedure that would automatically
transform the implicit into the explicit form, but he did not have such a method.
Therefore, he settles for a manual alternative that consists of writing the implicit
form on top of programs written in Plankalkül (which is very descriptive of the
computation at hand) followed by the explicit form obtained manually by the

10.3 Symbolic Computation 159

programmer. In this sense, Zuse writes: “In the following programs an implicit
and an explicit form are given. But the implicit form represents a comment and
the explicit form is the actual program” (Zuse, 1972). That is, we can interpret
these comments as a logic specification of the computation in the imperative code
that follows. However, we know how difficult it is to transform a specification
into a program, and this is also Zuse’s difficulty, which is solved by doing the
transformation by hand.

That being said, there are parts of the Plankalkül draft that seem to point toward
the full calculus of programs that Zuse would have liked to have. It would be
the equivalent of the logic synthesis approach in the draft of the thesis: given
a logic formula, transform it into an equivalent relay circuit. Now it would be:
given a predicate logic formula, transform it into an equivalent imperative program.
Zuse mentions that he had an operator for assertions (for introducing axioms),
which he did not use for code in the end. He writes: “The assertion symbol . � ...
does not belong to the syntax of PK proper. It only has meaning in comments.
However, it shows that I originally planned to extend the PK as a real “calculus”,
beyond its use as algorithmic language” (Zuse, 1972). Had Zuse developed the
calculus he had in mind, he would have created the first automatic theorem proving
system. Nevertheless, some authors think that Zuse stood out among early computer
pioneers because of his keen interest in this issue (Bibel, 2020).

Zuse has a section in the draft of Plankalkül where he shows how to pre-
transform formulas of the propositional calculus into a so-called “machine form”
that makes the automatic evaluation easier. The M-Form of logic formulas is just a
transformation of logic expression with parentheses to a kind of Polish notation that
does not require parenthesis. It is a small part of the Plankalkül, but one that clearly
shows the great interest Zuse had in the automatic synthesis of programs derived
from the formulas of the predicate logic.

10.3 Symbolic Computation

Among the many examples of different kinds of computations in the Plankalkül
draft, but there is one that is especially important because it represents the first fully
symbolic computation ever written in a programming language. In the 19th century,
Charles Babbage had already worked on computational problems with a symbolic
background. For example, he was interested in the multiplication of polynomials, a
problem at the root of computational algebra. Zuse, on the other hand, was interested
in the automatic synthesis of programs, and since this was not possible in general,
he settles for a smaller problem: given a formula of the predicate calculus with
quantifiers, functions, and parentheses, check whether the formula is well-formed.
A special case would be checking that arithmetic expressions are well-formed.

There is an immediate connection here to the Z4, which Zuse was building at
the time. For the Z4, Zuse wanted to have a Planfertigungsgerät, which we can
literally translate as “producer of programs,” that is a program synthesizer (Zuse,

160 10 Plankalkül

1944e). His idea was that the users of the Z4 would have a keyboard on which
they could write arithmetic expressions, with parentheses, functions, and operators,
which would then be automatically converted into executable code for a punched
tape. Zuse could not do this on time for delivery of the Z4 so the final result was
a kind of first step. In the Z4, all operations and functions (such as square root
or maximum of two numbers) had a button in the console. The operator pressed the
sequence of operations he wanted to have for the punched tape, and the Z4 produced
the opcodes needed. This was much easier than having to remember and punch
the binary opcodes, as was the case with the Z3. Moreover, the Z4 could compute
program code on its own and print the corresponding punched tape. This capability
was certainly never used, but it shows how aware Zuse was of the possibility of the
Z4 producing its own programs. If the user simply typed the arithmetic formulas
on the keyboard, the Z4 could have acted as a compiler, translating the algebraic
expressions into machine code. Again, this was never done, but the idea was clear,
and the necessary equipment was available in the Z4.

Such a compiler would have been written in something similar to Plankalkül. In
fact, Chap. 4 of the PK draft deals with the symbolic processing and checking of
formulas of the propositional calculus. Zuse describes something akin to a grammar
for valid expressions and then shows how to process a stream of characters coming
from the keyboard for checking. He defines well-formed expressions and writes, for
example, that a variable is an expression, a negated variable is also an expression,
two expressions can be connected by an operator to produce an expression, and so
on. It is just the kind of simple grammars that computer science students learn to
use today to parse arithmetic expressions that are transformed into executable code.

So there we have it. Babbage’s dream has finally come true: the first description
of how computers could be used to solve not only numerical problems, but also
algebraic equations and a wide range of symbolic computations necessary for the
development of high-level programming languages and their compilers.

Looking back on Plankalkül today, we should not forget that it was originally
much more than its second imperative half. The first half was a pioneering glimpse
of what would evolve many decades later into logic programming and automatic
theorem proving.

10.4 The Syntax of the Plankalkül

In the next sections, we will concentrate on the imperative form of Plankalkül, and
we will describe the subset that we selected for the first implementation.

The original document describing Plankalkül (Zuse, 1972) is not free of contra-
dictions, and several ambiguities need to be resolved before attempting to write a
compiler for the language. Therefore, in what follows we have identified a powerful

10.4 The Syntax of the Plankalkül 161

subset of the language that is computationally complete and free of ambiguities. In
defining this subset, we were guided by the following principles:

• Historical accuracy. We wrote a syntax-driven editor that preserves the original
two-dimensional structure of the language.

• Simplicity. Zuse left alternative syntactic options open at several points in the
definition of the language. We retained only one option in each case, to make the
syntax unambiguous, especially with respect to data types.

• Induction from examples. When Zuse did not clearly outline the syntax or oper-
ational semantics of language constructs, we inferred them from the numerous
examples contained in the founding Plankalkül document.

• Regularity. When syntactic options were ambiguous, we chose one that made the
language more regular and “orthogonal.”

• Simple implementation. For the first subset of Plankalkül that we defined,
we chose only those constructs that are easy to implement in a conventional
computer. We left set and predicate logic constructs out of the selected language
subset. These can be implemented later using macrodefinitions and a standard
Plankalkül library.

We call the subset of Plankalkül obtained from these principles “Plankalkül 2000.”

10.4.1 Variables and Data Types

Variables are essential for any imperative programming language. In Plankalkül
there are three main classes of variable:

• V variables, numbered V0, V1, etc., which are read-only.
• Z variables, numbered Z0, Z1, etc., which can be read and written.
• R variables, numbered R0, R1, etc., which are write-only.

The V variables are used to pass parameters to programs, the Z variables hold
intermediate results, and the R variables are used to return the final result of a
subroutine. Additionally, there are “loop variables,” which are used in While loops.
They are denoted as .i0, i1, i2, etc., according to the depth of loop nesting, and are of
generic numeric type. We will have more to say about these variables later.

All variables have a “structure” or type. The following data types are possible:

• One bit, denoted as “0”
• n bits, where n is an integer, denoted “n.0”
• Tuples of other types. For example, (3.0,4.0) denotes a pair of variables, one of 3

bits, the second of 4 bits. Tuples can have two or more elements.
• m times any other type, for example, 4.5.0, which denotes an array of four

elements, each one of five bits.

162 10 Plankalkül

Some examples of possible data types are:

• 8.0 a byte
• 16.8.0 a vector of 16 bytes
• (0, 8.0, 16.0) a triple consisting of one bit, 8 bits, and 16 bits
• 32.(0, 8.0, 16.0) an array of 32 triples with the structure above

It is easy to see that data structures in Plankalkül can be implemented as trees.
The last example given above represents a tree with 32 child nodes at the root level.
Each child has three children, and so on. It is important to note that tuples are just
another syntactical way of referring to arrays. We need tuples when the data types
of the elements in the array are different. We use vectors when the data type of
each element is the same. In Plankalkül 2000 all variables are vectors or tuples, or
combinations of both.

There are no variable declarations at the beginning of a program. Instead, each
variable carries its own type. Variables are generally written using four lines:

Z

V 1

K 0

S 5.0

This example refers to the variable Z1 of type 5.0 (five bits). The subindex of the
variable is written in the “V” line, the component of the variable in the “K” line,
and the type in the “S” line. The annotations to the left of the vertical line are just a
mnemonic device and are not part of the syntax. The variable Z1 is a vector of five
bits. If we want to refer to the first bit in the vector we write:

Z

V 1

K 0

S 0

Note that the components of arrays are numbered starting from zero. Also note
that the type of the component selected in the example is a single bit. The VKS
annotation can be omitted, as we do in the examples that follow.

Component indices can be variable. We can refer to the component of the variable
Z1 whose number is stored in variable Z2 as follows:

10.4 The Syntax of the Plankalkül 163

The connecting line means that the content of variable Z2 (a byte) is used as an
index for variable Z1. The indexed component is of type “0” (a bit).

10.4.2 Arithmetic and Logic Statements

The symbol . ⇒ is used to denote value assignment. Variable assignments are read
from left to right, like in the following example of a Plankalkül statement:

V + V .⇒ Z

0 0 2

0 2

8.0 8.0 8.0

Here, component 0 of V0 and component 2 of the same array are added and the
result is stored in variable Z2, which is an array of eight bits. The component line
of Z2 is left empty because we want to refer to the entire array of eight bits. Only
V and Z variables (and loop variables) can appear in expressions on the left of the
assignment symbol.

The four basic arithmetic operations are defined in Plankalkül. We use the
symbols +, . −, . ×, and / to denote addition, subtraction, multiplication, and division.
Since each variable “carries” its type, the programmer must be careful to write
only valid arithmetic operations, otherwise a runtime error will result. We adopt
the convention that arithmetic and logic operations are only valid for arguments of
the same type (generically, n.0). The result also has the same type as the arguments.
We use two’s complement arithmetic to perform the operations.

There are logic operators for conjunction, disjunction, and negation, denoted with
the symbols . ∧, . ∨, and . ¬ The conjunction of two bits, for example, can be written
as:

Z .∧ Z .⇒ Z

0 1 2

1

0 0 0

Here, we compute the conjunction of two variables Z0 and Z1 (single bits), and
store the result in variable Z2, component 1. Variable Z2 is therefore an array of
bits, and we are selecting only one of its components. Negation is expressed in
Plankalkül by writing a dash above the name of a variable or an expression. For
ease of implementation, we will use the unary operator . ¬ to denote negation instead.
Two other logic operators are defined in Plankalkül: the identity operator . ∼ and the

164 10 Plankalkül

XOR operator ./ ∼. Constants are written in Plankalkül in the first line of the tabular
notation, like in:

Z + 2 .⇒ Z

0 2

8.0 8.0

We will always assume that the type of a constant is the type of the other
variable argument or of the result (when two constants are combined). There are
no arithmetic operations on tuples, but tuples can be assigned to tuples with the
same number of elements.

10.4.3 Guarded Commands

There is a construct in the Plankalkül that could be interpreted in other high-level
programming languages as an IF-THEN statement. It corresponds to deterministic
guarded commands in some modern languages.

The symbol .� is used to denote conditional execution; it separates a logic
expression and a statement (Zuse used an arrow with a dot underneath). The
statement to the right of the arrow is executed only if the logic value to the left
of the arrow is true (that is, a 1). For example, the statement:

Z .∧ Z .� V + V .⇒ Z

0 1 0 0 3

0 2

0 0 8.0 8.0 8.0

means that if the conjunction of the two bits stored in Z0 and Z1 is true, the addition
is performed, and the result is stored in Z3. Note that the arrow symbol binds
more strongly than the assignment symbol, and the logic and arithmetic operation
symbols, more strongly than the arrow. Brackets can be used to disambiguate
expressions, like in the example below:

(Z .∧ Z) .� (V + V) .⇒ Z

0 1 0 0 3

0 2

0 0 8.0 8.0 8.0

10.4 The Syntax of the Plankalkül 165

Note that brackets open and close in the upper line. Statements are written using
a line. A block of statements is marked as a unit by enclosing it in square brackets,
which are as large as needed, for example, a block of two instructions, an addition,
and a multiplication:

.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Z + 2 ⇒ Z
0 2

8.0 8.0

Z × Z ⇒ Z
2 1 3

8.0 8.0 8.0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Conditions can be tested with the equality and inequality operators .(=,>,<),
which are used to check if the first argument is equal, larger, or smaller than the
second. Any two structures can be tested for equality, but only structures that can be
interpreted as numbers (n bits) can be tested with the other two operators. We can
store the greater of two numbers Z1 and Z2 in Z3 using the following instructions:

Z .⇒ Z

1 3

8.0 8.0

Z .< Z .� Z .⇒ Z

1 2 2 3

8.0 8.0 8.0 8.0

10.4.4 Iterations

There is a kind of WHILE statement that is useful for performing iterations. The
syntax of the construct is

W [Block]

166 10 Plankalkül

where [Block] denotes a block of statements. In general, an iterative construct has
the form:

W C1 .� S1

C2 .� S2

. . .

Cn .� Sn

The block is executed repeatedly until all conditions C1, C2, etc., tested inside
the block, fail in a single run. The statements S1, S2, etc., are executed according to
the truth value of their respective conditionals. The construct W0(num) preceding
a block of instructions can be interpreted as an FOR operation: the block of
instructions is executed “num” times. If we want to have access to a loop variable
containing the current iteration number, we use the construct W1(num). A loop
variable i runs from 0 to num-1. The loop variable is a special variable with
an unspecified default numeric type and can only be accessed within the block
following the W1 declaration. If nested loops are used, they are numbered using
the index row and their loop variables also use these numbers.

W1 . . . i . . . W1 . . . i . . .

0 . . . 0 . . . 1 . . . 1 . . .

In the example above, the first loop has index 0 and the second loop has index
1. The loop variables are i0 and i1. They can only be used within the scope of
their respective While loops. Zuse defined a built-in function that is very helpful
when processing arrays. The function N applied to a variable returns the number of
components of the variable as result. See below for an example of its application.

10.4.5 Examples of the Implicit Form of Plankalkül

We said earlier that programs in Plankalkül can be specified using the implicit form,
while the explicit form represents the concrete execution model. In this subsection,
we look at the quantifiers and operators used in Plankalkül, and some examples of
the implicit expressions that Zuse used.

The quantifiers and operators used by Zuse are the following:

• The all-quantifier. Instead of writing . ∀x, Zuse used Hilbert’s notation: . (x).
• The existence quantifier .(Ex).
• The operator “all those,” written . x̃, returns all elements that satisfy a given

condition bundled in a set.

10.4 The Syntax of the Plankalkül 167

• The operator “all those, even when repeated,” written . ˜̃x, returns all elements in a
set that satisfy a condition, even if they are repeated.

• The operator “the only element such that,” written . x́, is like . x̃ but there can be
only one element fulfilling the condition.

• The operator “next element,” written . μx, returns the next element in a set that
fulfills a condition. Since Zuse used lists to represent sets, there is an implicit
order in the elements.

The following examples show how the quantifiers and operators were used. If we
want to express that for all x in a set V the logic predicate .R(x) is true, we write:

. (x)(x ∈ V → R(x)).

If we want to say that there exists an x in the set V such that .R(x) is true, we write:

. (Ex)(x ∈ V ∧ R(x)).

We can collect in a subset Q all elements in a set for which .R(x) is true by writing

. x̃R(x) ⇒ Q.

We collect elements, including repetitions, with . ˜̃x. If we want to store in Q the single
element that satisfies .R(x), we write

. x́R(x) ⇒ Q.

If we want to go through the elements in a set and pick the next element fulfilling
.R(x) we write

. μx R(x) ⇒ Q.

An example from the section in Plankalkül that deals with chess could be the
following: “given two different squares A and B on the chess board, check if there
is another square C, so that A and C are in knight relationship, and also B and C”:

. (Ex)(R(A, x) ∧ R(B, x) ∧ (A
= B)

Here the predicate R checks the knight relationship. It is a subprogram that we
have written before. The set from which the squares are being taken is the complete
chessboard. This set is implicit in the above expression. The examples have been
simplified using functions and variables with a single-letter name and without
specifying their type.

168 10 Plankalkül

10.4.6 Linearized Form of the Plankalkül

To simplify the rest of the chapter, we adopt a linearized form of the Plankalkül, in
which variables are written as in the following examples:

V0[1:5.0] Variable V0, component 1, of type 5.0
Z1[5.3:9.0] Variable Z1, component 3 of component 5, of type 9.0

Some special symbols are written using ASCII characters or combinations of them.
Conjunction, disjunction, and negation are represented by the characters “&”, “|”
and “!”. Assignment is expressed using “=>” and the conditional arrow is written
“->”. The conditional expression in the section about guarded commands can be
simplified by writing:

Z0:0 & Z1:0 -> V0[0:8.0] + V1[2:8.0] => Z3[:8.0]

This is much more convenient than the four-line syntax of the Plankalkül draft.
We use square brackets to enclose blocks of statements, and the semicolon as a
separator between statements to write more than one statement on each line. An
instructive example is to compute the sum of the bytes stored in an array V0 of type
16.8.0. The following statements would accomplish this task:

0 => Z1[:8.0]
W1(16) [Z1[:8.0] + V0[i:8.0] => Z1[:8.0]]

Note that we don’t write the type of the constant 16 and the type of the loop
variable. They are generic numeric variables.

10.4.7 Functions and Function Calls

Programs in Plankalkül are functions that can be called from other programs. Each
program is assigned a unique number. The declaration of input and output variables
is done in the “Randauszug” (“boundary summary,” i.e., the program interface),
which, for example, has the following form:

P3 R (V, V) .⇒ (R, R)

0 1 0 1

8.0 8.0 4.0 4.0

In this example, program P3 is defined with two input variables V0 and V1, each
of 8 bits, and two output variables R0 and R1, each of four bits. The number of
input and output variables in the Randauszug is variable. Zuse always numbered the
input variables from 0 to .n − 1 and the output variables from 0 to .m − 1, where n
and m are the number of input and output variables, respectively. The identifier for

10.4 The Syntax of the Plankalkül 169

the program in the example above is just an “R”. When this program is called as a
function, we write “R3” with the two variable arguments enclosed in parentheses.
Note that in the Randauszug, the input and output variables are written without the
component row, that is, they can only be used as complete variables.

Functions can also have a symbolic identifier. For example, if we want to define
a function to select the maximum of two bytes, we could write the following
Randauszug

P5 Max (V, V) .⇒ R

0 1 0

8.0 8.0 8.0

followed by the appropriate block of instructions. We will write the Randauszug
in the following linearized form:

P5 Max (V0:8.0,V1:8.0) => R0[:8.0]

When a function is called with a subindex we select the component of the output we
are interested in:

R3 (Z, Z)

0 1 3

4.0 8.0 8.0

This is a call to program P3 above, which computes two result variables, R0
and R1. In the call, we select variable R0 of type 4.0 from the result tuple. In the
linearized form we write for this call: R3(Z1:8.0, Z3:8.0)[0]:4.0 . ⇒ Z4:4.0. Finally,
although Zuse did not signal the end of a program with any special keyword, we
will write END at the end of every program.

10.4.8 Input and Output

Zuse did not define any primitive instructions for input and output. He seems to have
considered this type of instruction to be machine-specific and not part of the main
language constructs. In our implementation of the language, we have not defined
any input/output instructions. The user can inspect and modify the state of the
variables stored in memory by opening a memory window, which is specific to each
program since Plankalkül variables are local. The example below shows a program
that computes the maximum of three variables by calling the function max.

170 10 Plankalkül

P1 max3 (V0[:8.0],V1[:8.0],V2[:8.0]) => R0[:8.0]
max(V0[:8.0],V1[:8.0]) => Z1[:8.0]
max(Z1[:8.0],V2[:8.0]) => R0[:8.0]

END

P2 max (V0[:8.0],V1[:8.0]) => R0[:8.0]
V0[:8.0] => Z1[:8.0]
(Z1[:8.0] < V1[:8.0]) -> V1[:8.0] => Z1[:8.0]
Z1[:8.0] => R0[:8.0]

END

10.5 Implementation Issues

There are several syntactical aspects of Plankalkül that must be dealt with in any
implementation. The programmer writes the type of the variables each time they
are used, and this can lead to inconsistencies. We decided that each variable in
a program has a unique type, which cannot be “casted” into another type. This
leaves open the possibility of writing the type of a variable only once and using type
inference at any other point in the program where it is used. However, type inference
is made a bit more difficult because we can refer to a component of a variable before
we refer to the variable itself. For example, a reference to V0[1.1]:8.0 may appear in
a statement before a reference to V0:16.8.8.0. Therefore, the type inference routine
must look at the entire program before deciding on the type of a variable. We did
not implement type inference in the first implementation of Plankalkül 2000 so
the programmer has to write the type of each variable or component that is used.
We decided to refer to components of variable calls by using square brackets in
the linearized form of the Plankalkül. We also decided that the type of the result
must always be written. Zuse usually did not write the type of the result of a
variable call, since it can be inferred from the definition of the language. In the
first implementation of Plankalkül 2000, we always write the type of variable or
variable call.

10.5.1 The Editor

The two-dimensional syntax of Plankalkül is very difficult to handle with a
conventional editor. Therefore, we developed a syntax-driven editor that allows the
user to write a program by selecting options from menus. Figure 10.1 shows the
start window of the editor. By clicking on the “Plan” keyword, it is possible to get a
layout for a new program, which includes the program number, the Randauszug, and
the instructions. Figure 10.2 shows the state of the window after several selection
steps. The user has selected program number 1 from a menu and 4 and 3 variables
for the input and output in the Randauszug. The user can now select a statement

10.5 Implementation Issues 171

Fig. 10.1 Start window of
the syntax directed editor

Fig. 10.2 State of the editor
after some selections

from several options (“Befehl”), a new block of statements (“Block”), or end the
sequence of statements (“FIN”).

Basically, the options offered by the menus are the only ones valid under the
defined grammar. One can think of this syntax-driven editor as one that only allows
the user to develop the Backus–Naur form for the programming language we are
considering. In this respect, this editor is similar to those written by Teitelbaum
and Reps (1981), by Arefi et al. (1990), and others. The user is restricted to stay
within the boundaries of the Plankalkül grammar and cannot write invalid programs.
Any program written with this editor is grammatically correct, although it may of
course be semantically incorrect. The syntax-driven editor produces a linearized
version of the Plankalkül program. Thus, the programmer can write his program
directly in linear form using any kind of editor or use this two-dimensional editor to
produce the linear code. Although both possibilities are open to the programmer, the
syntax-driven editor should give to the user the “look and feel” of writing Plankalkül
programs in the original syntax.

The editor was written in Java and was operational for several years on our
website for the project.

172 10 Plankalkül

10.5.2 The Parser

The syntax of Plankalkül 2000 is summarized in Appendix A. We wrote a parser
for this syntax using the public domain version of the Cocktail compiler generator
system (Grosch and Emmelmann, 1991). The figure below shows the structure of the
whole Plankalkül system: the syntax-driven editor transforms the two-dimensional
code into the linearized version of Plankalkül described in this document. The
parser then transforms this code into a simpler textual representation of the program
that we call the “intermediate code.” This intermediate code is then interpreted by
the runtime system. This allows the user to set the values of variables through an
interactive user interface (Fig. 10.3).

The parser produces not only intermediate code for the runtime system but also
TeX code that can be interpreted and sent to a PostScript printer.

10.5.3 The Runtime System

The runtime system was written in Java. When the system starts, a window displays
the contents of the memory variables. This can be changed interactively by the
user. Figure 10.4 is an example of the state of the memory after running a sorting
program. The first row in the window shows an array of five numbers, each of 8
bits. The ones are shown as full circles (the least-significant bits are written to the
left). The decimal equivalent is written below each element of the array. The last
row shows the result of the sorting routine. The rows in the middle are intermediate
(Z) variables.

Before the program starts, the user can modify the values of the V variables by
clicking on the individual bits. After the program runs, the user can inspect the result

Fig. 10.3 Structure of our Plankalkül system

10.6 Sample Programs 173

Fig. 10.4 The result (last row) of sorting the V variables (first row)

variables. The original definition of Plankalkül does not include any input–output
instructions. Zuse left this part of the language undefined. Curiously, this is also
the case in modern programming languages, where input and output routines are
defined in a special system library.

10.6 Sample Programs

In this section, we provide some examples of Plankalkül 2000 programs written
as linear code. All these programs have been parsed and executed by our system.
Program P1 assigns the conjunction of two input variables to the result variable.

P1 R(V0[:0],V1[:0]) => R0[:0]
V0[:0] & V1[:0] => R0[:0]

END

Program P2 computes the expression a+b*c.

P2 R(V0[:16.0],V1[:16.0]) => R0[:16.0]
V0[:16.0] + V1[:16.0] x V1[:16.0] => R0[:16.0]

END

A variation of the program above (to test syntactic alternatives).

P3 R(V0[:16.0],V1[:16.0]) => R0[:16.0]
(V0[:16.0] + V1[:16.0]) * V1[:16.0] => R0[:16.0]

END

Another variation.

P4 R(V0[:16.0],V1[:16.0]) => R0[:16.0]
(V0[:16.0] * 6)+(V1[:16.0]*V1[:16.0]) => R0[:16.0]

END

Program P5 computes the factorial of 5 (the generic type is 32.0)

P5 R(V0[:32.0]) => R0[:32.0]
1 => Z0[:32.0]
W1 (5) [

174 10 Plankalkül

i * Z0[:32.0] => Z0[:32.0]
]

Z0[:32.0] => R0[:32.0]
END

Program P6 sorts 16 numbers using insertion sort.

P6 sort (V0[:6.8.0]) => R0[:6.8.0]

W1[0](4)
[
V0[i0:8.0] => Z0[i0:8.0]

1 => Z4[:32.0]
W1[1](i0)
[
(V0[i0:8.0] < Z0[i1:8.0]) & (Z4[:32.0]=1) ->
[

i0-i1 => Z1[:32.0]
W1[2](Z1[:32.0])

[
i0 - i2 - 1 => Z3[:32.0]
i0 - i2 => Z2[:32.0]
Z0[Z3[:32.0]:8.0] => Z0[Z2[:32.0]:8.0]
]

V0[i0:8.0] => Z0[i1:8.0]
0 => Z4[:32.0]

]
]
]

END

10.7 Conclusions

It is unfortunate that programs written in Java at some point became insecure for the
Internet so that many browsers will not run legacy code anymore. Our implemen-
tation of Plankalkül was operational for several years. A modern implementation
would have to take into account the evolving standards of the Internet. This chapter
offers enough detail for anyone interested in developing his or her runtime system
for Plankalkül 2000.

In retrospect, the definition of Plankalkül reads like a miracle, given that the year
of the draft is 1945. Plankalkül anticipates many constructs and data structures now
common in computer science. The use of Plankalkül both as a logic specification and
as an imperative language is fascinating. The grounding of the language in predicate
calculus anticipated later developments, such as logic programming and theorem
proving. This does not mean that Zuse knew how to develop proof systems, but it
shows the depth of the theoretical ground on which Plankalkül was built.

Although Zuse tried to disseminate his work within the emerging community of
computer experts by publishing the main features of Plankalkül in scientific journals

Appendix: Syntax of the Implementation of Plankalkül 2000 175

(Zuse, 1948), his work received little attention. It would take almost 10 years until
computer companies started developing compilers for programming languages, such
as FLOW-MATIC (1955), from which COBOL (1959) was derived. FORTRAN
appeared in 1957 and ALGOL in 1958. Although some participants in the ALGOL
meetings had some superficial knowledge of Plankalkül, the language was never
considered a serious candidate for further development. It was virtually unknown
until 1972 when the German Society for Mathematics and Computing published the
draft finished in 1945.

For our story in this book, Plankalkül represents the highest point in the
computational hierarchy defined by Konrad Zuse, as we show in the last chapter
of this volume. It is an astonishing achievement considering that Zuse was building
several computers at the same time (Z4, S1 and S2), trying to keep his company
afloat, and all of this happening under wartime conditions. The world around was
crumbling—amidst the rubble, the age of computing was emerging.

Appendix: Syntax of the Implementation of Plankalkül 2000

In the following, we adopt these conventions: a vertical bar (|) separates optional
syntactical elements, {expr}* means that expr can be concatenated zero or more
times, all identifiers with a defined rule can be expanded, any other characters are
included literally in the expanded expressions.

Symbols

digit ::= 0 | 1 | 2 | ... | 9
digits ::=digit {digit}*
letter ::= a | b |...| A | B |...| Z
type-letter ::= a | b | ...h | j |... | A | B | ...| Z
identifier ::= letter {letter | digit}*
pos-constant ::= digits
neg-constant ::= - digits
constant ::= pos-constant | neg-constant
dot ::= "."
comma ::= ","

I.e. type-letter does not contain “i”.

Data Types

simple-type ::= 0
tuple-type ::= (type, type {comma type}*)

176 10 Plankalkül

type ::= simple-type | tuple-type | digits dot type
var-type ::= type-letter dot type
all-type ::= type | var-type

Variables

v-variable ::= V digits [component: type] | V digits[: all-type]
z-variable ::= Z digits [component: type] | Z digits[: all-type]
r-variable ::= R digits [component: type] | R digits[: all-type]
loop-var ::= "i" | "i" digits
loop-expr ::= loop-var | loop-var + pos-constant |

loop-var - pos-constant
type-var ::= type-letter
type-expr ::= type-var | type-var + pos-constant |

type-var - pos-constant | type-expr + type-expr |
type-expr - type-expr

component ::= digits | v-variable | z-variable | loop-expr |
type-expr | component dot component

Function Call

zv-call-arg ::= v-variable | z-variable | call | constant |
loop-var | type-var

call-all ::= R digits [:type] (zv-call-arg {,zv-call-arg}*)|
identifier [:type] (zv-call-arg {,zv-call-arg}*)
call-one ::= R digits[component : type](zv-call-arg{,zv-call-arg}*)|

identifier[component : type](zv-call-arg{,zv-call-arg}*)
call ::= call-all | call-one

Arithmetic Operations

arith-argument-left ::= v-variable | z-variable | constant |
loop-var | type-var | call | arith-operation |
(arith-operation)

arith-argument-right ::= v-variable | z-variable | pos-constant |
(neg-constant) | loop-var | type-var | call |
arith-operation | (arith-operation)

arith-argument ::= arith-argument-left | arith-argument-right
arith-operation ::= arith-argument-left {+|-|x|/} arith-argument-right

Appendix: Syntax of the Implementation of Plankalkül 2000 177

Logic Operations

log-constant ::= + | -
condition ::= arith-argument = arith-argument |

arith-argument > arith-argument |
arith-argument < arith-argument |
zv-tuple = zv-tuple

pos-literal ::= v-variable | z-variable | log-constant | call |
condition | (condition)

neg-literal ::= !v-variable | !z-variable | !call | !(condition)
logic-argument ::= pos-literal | neg-literal | logic-operation |

(logic-operation)
logic-binary ::= logic-argument { "|" | & | ~ | /~} logic-argument
logic-operation ::= pos-literal | neg-literal | logic-binary |

!(logic-binary)

Assignment

assignment0 ::= arith-argument => {z-variable | r-variable}
assignment1 ::= logic-argument => {z-variable | r-variable}
assignment2 ::= zv-tuple => zr-tuple
assignment3 ::= zv-tuple => {z-variable | r-variable}
zv-tuple ::= (zv-arg, zv-arg {comma zv-arg}*)
zv-arg ::= v-variable | z-variable | constant | call | loop-var |

type-var | zv-tuple
zr-tuple ::= (zr-arg, zr-arg {comma zr-arg}*)
zr-arg ::= r-variable | z-variable | zr-tuple
assignment ::= assignment0 | assignment1 | assignment2 |

assignment 3

IF-THEN

if-then ::= logic-argument -> statement

WHILE

block ::= [statement{; statement}*]
while ::= w block | w [digits] block | w1 (arith-arg) block |

w1[digits] (arith-arg) block

178 10 Plankalkül

Statements

built-ins ::= FIN | FIN digits
statement ::= assignment | if-then | while | block | built-ins

Programs

program ::= P digits randauszug {statement }* END

Randauszug

randauszug ::= identifier v-tuple => r-tuple
v-tuple ::= v-variable | (v-variable {, v-variable}*)
r-tuple ::= r-variable | (r-variable {, r-variable}*)

// The variables are numbered sequentially, starting with 0
// constant, indices, N(), have generic type

References

Arefi, F., Hughes, C.E., and D.A. Workman. 1990. Automatically generating visual syntax-directed
editors. Communications of the ACM 33(3): 349–360. https://doi.org/10.1145/77481.77487.

Bibel, W. 2020. On the development of AI in Germany. Künstliche Intelligenz 34(2): 251–258.
https://doi.org/10.1007/s13218-020-00654-x. Open Access https://rdcu.be/b3oxS.

Grosch, J., and H. Emmelmann. 1991. A tool box for compiler construction. In Compiler
Compilers. CC 1990, ed. D Hammer. Lecture Notes in Computer Science, vol. 477, 106–116.
Berlin, Heidelberg: Springer. https://doi.org/10.1007/3-540-53669-8-77.

Rojas, R., Göktekin, C., Friedland, G., Krüger, M., Langmack, O., and D. Kuniß. 2000. Plankalkül:
The First High-Level Programming Language and its Implementation. Technical Report B-
3/2000, Freie Universität Berlin.

Teitelbaum, T., and T. Reps. 1981. The cornell program synthesizer: A syntax directed pro-
gramming environment. Communications of the ACM 24(9): 563–573. https://doi.org/10.1145/
358746.358755.

Zuse, K. 1944e. Planfertigungsgeräte. Deutsches Museum Digital. http://digital.deutsches-
museum.de/item/NL-207-0220/.

Zuse, K. 1945. Theorie der Angewandten Logistik, 2. Buch. Deutsches Museum Digital. http://
digital.deutsches-museum.de/item/NL-207-0233/.

Zuse, K. 1948. Über den Plankalkül als Mittel zur Formulierung schematisch kombinativer
Aufgaben. Archiv der Mathematik 1(6): 441–449.

Zuse, K. 1972. Der Plankalkül, vol. 63. Sankt Augustin: Berichte der Gesellschaft für Mathematik
und Datenverarbeitung.

https://doi.org/10.1145/77481.77487
https://doi.org/10.1145/77481.77487
https://doi.org/10.1145/77481.77487
https://doi.org/10.1145/77481.77487
https://doi.org/10.1145/77481.77487
https://doi.org/10.1145/77481.77487
https://doi.org/10.1145/77481.77487
https://doi.org/10.1007/s13218-020-00654-x
https://doi.org/10.1007/s13218-020-00654-x
https://doi.org/10.1007/s13218-020-00654-x
https://doi.org/10.1007/s13218-020-00654-x
https://doi.org/10.1007/s13218-020-00654-x
https://doi.org/10.1007/s13218-020-00654-x
https://doi.org/10.1007/s13218-020-00654-x
https://doi.org/10.1007/s13218-020-00654-x
https://doi.org/10.1007/s13218-020-00654-x
https://rdcu.be/b3oxS
https://rdcu.be/b3oxS
https://rdcu.be/b3oxS
https://rdcu.be/b3oxS
https://doi.org/10.1007/3-540-53669-8-77
https://doi.org/10.1007/3-540-53669-8-77
https://doi.org/10.1007/3-540-53669-8-77
https://doi.org/10.1007/3-540-53669-8-77
https://doi.org/10.1007/3-540-53669-8-77
https://doi.org/10.1007/3-540-53669-8-77
https://doi.org/10.1007/3-540-53669-8-77
https://doi.org/10.1007/3-540-53669-8-77
https://doi.org/10.1007/3-540-53669-8-77
https://doi.org/10.1007/3-540-53669-8-77
https://doi.org/10.1145/358746.358755
https://doi.org/10.1145/358746.358755
https://doi.org/10.1145/358746.358755
https://doi.org/10.1145/358746.358755
https://doi.org/10.1145/358746.358755
https://doi.org/10.1145/358746.358755
https://doi.org/10.1145/358746.358755
http://digital.deutsches-museum.de/item/NL-207-0220/
http://digital.deutsches-museum.de/item/NL-207-0220/
http://digital.deutsches-museum.de/item/NL-207-0220/
http://digital.deutsches-museum.de/item/NL-207-0220/
http://digital.deutsches-museum.de/item/NL-207-0220/
http://digital.deutsches-museum.de/item/NL-207-0220/
http://digital.deutsches-museum.de/item/NL-207-0220/
http://digital.deutsches-museum.de/item/NL-207-0220/
http://digital.deutsches-museum.de/item/NL-207-0220/
http://digital.deutsches-museum.de/item/NL-207-0233/
http://digital.deutsches-museum.de/item/NL-207-0233/
http://digital.deutsches-museum.de/item/NL-207-0233/
http://digital.deutsches-museum.de/item/NL-207-0233/
http://digital.deutsches-museum.de/item/NL-207-0233/
http://digital.deutsches-museum.de/item/NL-207-0233/
http://digital.deutsches-museum.de/item/NL-207-0233/
http://digital.deutsches-museum.de/item/NL-207-0233/
http://digital.deutsches-museum.de/item/NL-207-0233/

Chapter 11
Zuse’s Computer for Binary Logic

This chapter deals with the architecture of Konrad Zuse’s “logistische Maschine”
(logic machine). The computer was conceived by Zuse around 1944 as a minimal
architecture that could nonetheless implement all operations available in his
previous “algebraic machines,” that is, conventional numerical computers. The
logic machine featured a memory consisting of one-bit words and a processor with
two one-bit registers. The CPU operations were limited to the conjunction and
disjunction of the two one-bit registers (each register could be negated beforehand,
if desired). The program was stored in a read-only punched tape. As we show,
the machine was as powerful as Zuse’s algebraic machines, but only in theory.
In practice, the simplicity of the hardware would have resulted in extremely long
programs.

11.1 Introduction

It was while designing his machines Z1, Z2, and Z3 (1936–1941) that the German
inventor Konrad Zuse gradually became aware that the instruction set of a digital
computer could be reduced to sequences of logic operations acting on single
bits and pairs of bits. The addition of two 8-bit numbers, for example, can be
reduced to the manipulation of each bit in the numbers’ binary representations,
executing the necessary sequence of negations, conjunctions, and disjunctions, in
the appropriate order. In other words: one can add two 8-bit numbers going bit-
column by bit-column, from right to left, using both numbers, adding each binary
column, and propagating the carry to the left. In Zuse’s “algebraic machines,”
such as the Z3, the four elementary arithmetical operations were implemented in
hardware as bit-parallel operations. The elementary bit-parallel operations provided
by the CPU were addition/subtraction of two binary numbers and shifting of one
number. Complex operations were implemented from sequences of these elementary

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Rojas, Konrad Zuse’s Early Computers, History of Computing,
https://doi.org/10.1007/978-3-031-39876-6_11

179

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39876-6protect T1	extunderscore 11&domain=pdf
https://doi.org/10.1007/978-3-031-39876-6_11
https://doi.org/10.1007/978-3-031-39876-6_11
https://doi.org/10.1007/978-3-031-39876-6_11
https://doi.org/10.1007/978-3-031-39876-6_11
https://doi.org/10.1007/978-3-031-39876-6_11
https://doi.org/10.1007/978-3-031-39876-6_11
https://doi.org/10.1007/978-3-031-39876-6_11
https://doi.org/10.1007/978-3-031-39876-6_11
https://doi.org/10.1007/978-3-031-39876-6_11
https://doi.org/10.1007/978-3-031-39876-6_11
https://doi.org/10.1007/978-3-031-39876-6_11

180 11 Zuse’s Computer for Binary Logic

“microinstructions.” A rotating dial was employed to selected one microinstruction
after another, once per cycle. For example, division in the Z3 required 18 cycles to
complete (Rojas, 1997) (see Chap. 5).

Therefore, since an instruction can be reduced to simpler microinstructions, Zuse
realized that a minimal computer, that is, one able to work only on at most two
bits at a time, could execute each of the four arithmetic operations, provided that
one can write the corresponding program. Zuse called it the “logistische Maschine”
(he used Logistik as a synonym for Logik). This idea is an integral part of Zuse’s
passion for what would now be recognized as a high-level programming language,
the “Plankalkül.” In this language, designed by Zuse between 1941 and 1945, all
data structures are arrays or tuples of single bits, each of which can be accessed
individually by a program (all bits are indexed elementary components of a data
structure). Therefore, it was natural to consider a machine capable of sequentially
handling single bits and emulating the algebraic machines in software, at a minimal
cost. The idea of designing a “logic machine” was thus closely intertwined with the
conception of the Plankalkül (Zuse, 1972).

During the development of his different machines, Zuse made an early distinction
between “algebraic machines,” suited for floating-point computations, and “logic
machines,” i.e., those dedicated to solving logic problems and capable of symbolic
processing. One recurring example mentioned by Zuse is the parsing and interpre-
tation of expressions from predicate calculus (Zuse, 1972). According to Zuse, a
problem can be solved in an “explicit form,” for example, when we use a formula
to compute the roots of a quadratic polynomial, or it can be stated in an “implicit
form” if we only specify the quadratic equation and ask for its roots. Within this
framework, the implicit terms for logic computers would be expressions of the
predicate calculus, which could be reduced automatically to their explicit form,
i.e., an imperative program. Zuse maintained this distinction between algebraic and
logic computers all the time, but the meaning of the latter term gained a more special
connotation toward 1944. Plankalkül was a language for solving both numerical and
symbolic problems, as exemplified by Zuse’s code. He provides examples of the
bit-by-bit computation of floating-point operations and the extraction of the square
root of an integer. In his examples for logic operations, a minimal computer could
represent the underlying hardware.

In 1944, Konrad Zuse submitted a patent application for the logic machine, and
he made a similar application again in 1947 (Zuse, 1944d). Zuse had a habit of
filing for patents at an early stage to protect his ideas. However, the war and the
closure of the German Patent Office for several years made it impossible for him to
benefit from such early applications. When the patent office finally reopened, some
of his patent applications were denied, and the ones that were approved had little
to no commercial impact. The patent for the “logistische Maschine” was granted
in Austria in 1952, but had no commercial implications for Zuse’s company (Zuse,
1952a).

In this chapter, we delve into the details of the “logic machine.” We review its
general structure and discuss, toward the end, whether this machine was “arith-
metically complete,” that is, if it had the capability to perform all the fundamental
arithmetic operations that were executed by machines like the Z3.

11.2 General Structure of the Logic Machine 181

11.2 General Structure of the Logic Machine

The logic machine was characterized by its remarkable simplicity: it consisted of
an addressable memory for storing single bits, a tape reader, and a small CPU
(Fig. 11.1). In modern terms, we would say that the word length was one bit. The
processor could read and store single bits in memory. The program was stored on
the punched tape encoded in binary format. The tape could be of variable length.
There was also the theoretical possibility of attaching both ends of the punched tape
to create a single “loop” of instructions.

The processor of the logic machine featured just two registers, A and B: each of
them could be loaded with a single bit from a memory address. The first bit loaded
into the processor was stored in register A, and a flag (referred to as Pr by Zuse)
was set. The second bit loaded into the processor would automatically be directed
to register B based on the previously set flag.

In Fig. 11.1 we see the memory on the left, the program in a punched tape on
the right, and the processor in the middle. The instructions were read one by one.
Load operations were used to load the registers, while the store operation sent the
contents of register A to a memory location.

The processor could only execute two register operations: OR (disjunction) and
AND (conjunction) of the two one-bit registers. Before executing the conjunction
or disjunction, the contents of each register could be negated if desired. The opcode

Fig. 11.1 Block diagram of the logic machine

182 11 Zuse’s Computer for Binary Logic

of the instruction being executed completely specified all such combinations. In
Fig. 11.1 we can see that register A is read through one connection and negated
through another. A multiplexer selects either A or the negation of A. The same
applies to register B. The control bits for both multiplexers come from the opcode of
the instruction that has been read from the punched tape. Once both arguments have
been selected, the AND and OR operations are executed, and a third multiplexer
selects only one of the two results. The control bit for the multiplexer is provided by
an additional bit from the opcode.

The machine operated by first retrieving a command from the punched tape.
There were three types of command: logic operations, load operations from
memory, and store operations to memory. The result of a load operation went to
register A or B, as explained above. The result of a logic operation was stored back
to register A (which was flagged as occupied). A store operation would send the bit
in register A to the specified address and declare the register empty (so that it could
be loaded again).

A processor cycle consisted of five subcycles numbered I, II, III, IV, and V. A
conducting line labeled III, for example, received a voltage only during subcycle
III. The operation of the relays was synchronized by activating them only at the
specified times. Bits could be stored over long periods using “self-halting” relays,
that is, relays with two solenoids. When the first solenoid was energized, the relay
closed, which in turn energized a second solenoid that kept the relay closed as long
as there was power available. A “clear” signal just disconnected both solenoids from
the power supply. As usual, in Zuse’s diagrams, the relays are always drawn in the
“zero” position. A switch to the position “one” moved the relay to the other contact
(see the diagrams below).

The complete instruction set of the logic machine is summarized in Table 11.1
(where the symbol . ¬ means negation):

Table 11.1 Instruction set of the logic machine: LOAD and STORE operate with the memory.
The possible logic combinations of the two register bits A and B are shown

Memory operations

LOAD n Load a bit from memory address n to register A, if Pr flag is zero, and set
Pr to 1. Otherwise, load the bit to register B

STORE n Store register A to memory address n and set Pr to 0. Clear registers A
and B

Logic operations

A AND B Conjunction of A and B

. ¬A AND B Conjunction of . ¬A and B

A AND . ¬B Conjunction of A and . ¬B

. ¬A AND . ¬B Conjunction of . ¬A and . ¬B

A OR B Disjunction of A and B

. ¬A OR B Disjunction of . ¬A and B

A OR . ¬B Disjunction of A and . ¬B

. ¬A OR . ¬B Disjunction of . ¬A and . ¬B

11.3 Encoding of the Instruction Set 183

This implicit addressing of register A or B and their reset after a logic operation
allows us to also have single-bit operations with the CPU. The negation of memory
address n, for example, can be obtained from:

LOAD n

. ¬A OR B

STORE n

Here we have assumed that both registers were cleared before the code starts.

11.3 Encoding of the Instruction Set

In Zuse’s patent application of 1944, each control word is eight bits long. The bits
of the opcode are named . t1 to . t8. The upper two bits of the opcode select the kind of
operation. The following two-bit combinations are possible:

.t1 . t2

0 0 NOP

0 1 logic operation

1 0 load operation

1 1 store operation

In the case of load or store operations, the rest of the word specified the memory
address. In the case of a logic operation, the next bit specified a conjunction or
disjunction:

. t3

0 conjunction

1 disjunction

The bit . t4 specifies if register A, or its negation, should be operated on (. t4 has the
value 1 or 0, respectively). The bit . t5 specifies the same for register B.

For example, the instruction “not(A) OR B” (which is equivalent to A implies B)
would be represented with the following eight bits

. 01101XXX

where each bit X can be a 1 or a 0 (the extra bits were used for addresses, not needed
in the case of a logic operation). With this eight-bit coding only 64 addresses can be
specified. More addresses can be obtained by simply extending the opcode.

184 11 Zuse’s Computer for Binary Logic

Fig. 11.2 The decoding tree for the address . xi of a memory cell. The t’s are bits from the opcode.
In this example, only three bits from the opcode are interpreted, so that in total only eight memory
cells can be addressed. For more addresses, the opcode has to contain enough bits, and the decoding
tree has to grow accordingly

11.4 The Control and Decoding Unit

The control unit has to interpret the opcode of the instruction word—it is distributed
in several parts of the machine. Bits . t1 and . t2 of the opcode activate or deactivate
the memory unit. When the memory unit is inactive, the processor is active, and
vice versa. If a memory operation is needed, the memory address is decoded using
a decoder tree (which Zuse called a “Tannenbaum” (fir tree) circuit). Figure 11.2
shows the decoding circuit for an example with three-bit addresses. The values of
the bits . t3, . t4 and . t5 select one of the eight possible memory addresses. The result of
the address decoding is stored in self-halting relays named . x0 to . x7.

11.5 The Memory Unit

The memory of the machine consists of m addressable single bits. In our example
from the patent application, the memory unit would have 64 single-bit words
addressable with six bits. In the example in Fig. 11.3 three address bits have been
decoded and activate one of the relays . x0 to . x7. The relays . c0 to . c7 represent the
content of the addresses 0–7. For example, a load operation (.t1 = 1, .t2 = 0) from
address 3 would activate . x3 and load the contents of relay . c3 to register A, or register
B, according to the state of the relay Pr. When Pr = 0, the first register A is selected
as storage for a bit read from memory. When Pr = 1, register B is selected. Pr is
always zero at the beginning and flips to 1 immediately after a load. It is cleared
after a store operation.

11.7 Was the Machine Arithmetically Complete? 185

Fig. 11.3 A LOAD
operation reads the bit . ci

from memory address . xi and
stores it in Register A or
Register B, according to the
condition flag Pr

Fig. 11.4 The processor of
the logic machine (enclosed
in a box) contains just the
contacts of five different
relays

11.6 The Processor

Figure 11.4 shows the processor of the logic machine. We can see the state of the
two registers (represented by the state of relays A and B). When .t1 = 0, .t2 = 1,
and .t3 = 0, we obtain the result of the operation (A AND B). When .t1 = 0, .t2 = 1,
and .t3 = 1 we obtain the result of (A OR B). The relay . t4 inverts register A, when
.t4 = 0, while .t5 = 0 inverts register B. The result is stored back in Register A.

11.7 Was the Machine Arithmetically Complete?

One important question to ask is whether this machine could really compute all four
arithmetical operations, working bit by bit with the numbers stored in the memory
unit. The answer is: yes.

186 11 Zuse’s Computer for Binary Logic

To begin with, since subtraction can be reduced to the addition of two’s-
complement numbers, we first need to consider the addition operation. The addition
of two bits A and B, including also a carry C, can be computed as ((A XOR B)
XOR C). The carry can be computed with the logic expression ((A AND B) OR (A
AND C) OR (B AND C)). Since all these operations can be executed by the logic
machine, and since we can proceed from the lower to the higher bits in two 32-bit
numbers, for example, the machine is “addition-complete.” This is the operation
mode used by all “bit-sequential” computers such as Atanasoff’s ABC, the EDVAC,
or Turing’s ACE (von Neumann, 1945).

Now, the multiplication of two k-bit numbers can be reduced to k additions of
2k-bit numbers, where each number in the additions is just a shifted copy of the
second multiplication argument or is a zero. For example, we can multiply 111 by
101 as follows:

.

1 1 1
0 0 0

1 1 1
1 0 0 0 1 1

In this example, the second row in the addition is zero because the second bit of
the number 101 is zero. We can reduce the second row to zero by computing the
conjunction of the second bit in 101 (that is, a zero) with each one of the bits in
the multiplier 111. The conjunction of the first and third bit of the multiplicand (a
one) with the multiplier reproduces the multiplier 111. It is evident that the whole
multiplication can be computed by a deterministic formula and a fixed number of
logic instructions.

Now, what about division? In the case of a binary division, we have to show that
we can reduce the division of two non-signed 8-bit numbers to addition, subtraction,
and multiplication. Assume that we want to divide n by m. Assume that the result
can be encoded in the eight bits . b7 to . b0. We then have:

. n = (27b7 + 26b6 + . . . + 20b0)m + r

where r is the remainder of the integer division .m/n. This remainder is positive
or zero. We can find the bit . b7 by testing if .n − 27 is negative or positive. If it is
negative, . b7 must be 0. If it is positive, then . b7 is 1.

The main problem here is that testing a result and continuing with the division
algorithm seems to require some type of “IF” instruction. However, this is not so.
Such simple decisions can be implemented using logic flags. In the case above, we
can compute .n − 27 (the latter number is a constant) and inspect the “sign” bit S of
the result (the last carry-over bit). Then we can set . b7 to .b7 = not (S). We can then
continue recursively.

11.8 Discussion 187

From these considerations, a very simple algorithm results:

for . k = 7..0

. r = n − 2k ∗ m

. c = sign_bit(r)

. b(k) = (1 − c)

. n := (1 − c) ∗ r + c ∗ n

If the quotient is zero, the remainder has to be set to m.

11.8 Discussion

Very early during the development of his different floating-point computers, Konrad
Zuse became aware that solving combinatorial and logic problems required more
than floating-point registers. Modern computers have an integer ALU and one
FP unit. In Zuse’s terminology, machines designed for numerical operations were
“algebraic” while machines designed for logic and combinatorial problems were
“logistic” (another name for logic (Zuse, 1943b)). After the war, Zuse even
requested a patent for a machine with one “logic” and one FP processor, as well
as a common memory (Zuse, 1950). Well before 1945, he started thinking about
reducing the size and requirements for the logic machines, until he developed the
ideas explained in the previous sections.

As this chapter has shown, the logic machine can implement the four arithmetical
operations. With the processor of the logic machine and a sequence of instructions,
it is possible to implement any logic computation requiring a fixed number of steps.
If the number of iterations of an arithmetical algorithm is known, loop unrolling
can produce a single program executable by the logic machine. If the number of
iterations is unknown, a loop can still be implemented. However, the machine will
not stop.

It is easy to stop the processor in the Z3 and Z4 computers: dividing zero by zero
produces an exception and stops the machines. In the logic machine, there is no
way to end the chain of computations in a loop since the processor does not handle
exceptions.

We see then that the logic machine was an intellectual exercise for Zuse, just
a proof of concept that a minimal machine could implement all of the arithmetic
operations and displace the algebraic machines. It was also important from the point
of view of Plankalkül, which strived to reduce all software computations to one-bit
operations on composite data structures. The only possible application could have
been as the “core” of a microinstruction unit for the algebraic machines. Such a core
would have had a program tape for each high-level instruction (addition, subtraction,
multiplication, division of floating-point numbers, for example) and would have
made the algebraic machines cheaper and easier to reprogram.

188 11 Zuse’s Computer for Binary Logic

The logic machine could be compared with Turing machines. Both act on single
bits, transforming a memory bank. However, the logic machine addresses memory
randomly, and thus, the size of the memory is limited by the word length of the
punched tape commands. In the Turing machine, all addressing is done relative to a
pointer, the read-write head. There is no need to handle absolute addresses.

The CPU of the logic machine is simpler than the CPU of a Turing machine. The
latter includes a table of all state transitions depending on the current state and input.
Some authors have examined the minimal number of states and symbols needed for
universal computation. It turns out that a Universal Turing Machine can be defined
using just two states and a few symbols, or two symbols and a few states (Minsky,
1967). The CPU of Zuse’s machine has only two registers and three hardwired
operations: negation, conjunction, and disjunction. It seems much simpler than the
Turing machine. However, the programs that have to be written are, in the end, as
overblown and incomprehensible as the programs written for a Turing machine.

The main issue with Zuse’s logic machine is the absence of a test operation (an
IF operation). This instruction can be simulated using arithmetic, but what cannot be
simulated is an IF followed by a stop in one of the IF alternative threads. Therefore,
the logic machine cannot implement open-ended loops (WHILE loops) that stop.

There are some alternatives. Zuse could have used a program consisting of a
single loop to simulate conditional branching (as was explained for the Z3) and
do the rest with arithmetic. Of course, this is only feasible in theory, due to the
exponential blowup of the necessary program.

We can also imagine a processor with its clocked circuits, executing cyclically.
The logic machine could compute every single bit computed by such a processor in
one cycle (a finite amount). The program code to be executed would be stored in
the main memory and the external program in the punched tape would be fixed. It
would be the “universal logistic machine” that proceeds by executing one cycle of
the simulated microprocessor in every iteration.

The main problem, though, is that the load and store operations use fixed
addresses. There is no indexed addressing so that accessing an address given by
a pointer is not possible. This would be necessary for simulating the conditional
branch instruction in programs. There are theoretical ways for going around this
problem, but the necessary code blows up, so I will not explain this further. Turing
got it right when he decided to use relative addressing of the symbols in memory
for his machine, thus avoiding the problem of the memory size, which in the Turing
machine can be an unbounded tape.

There are several ways of achieving universality with different types of hardware
(see Rojas (1998b)), but the logistic machine is so simple that, without indexed
addressing, it is unfeasible to do it. The logistic computer is thus limited to forward
computations without conditional branch.

Obviously, the logistic machine will not be used any time soon but it is a
fascinating piece of computational theory, which requires a minimal hardware
implementation. It is a magnificent example that only shows the depth of Zuse’s
thoughts about the theory of computation as he concentrated on finishing his most
important computer in those years, the Z4.

References 189

References

Minsky. M.L. 1967. Computation: finite and infinite machines. Upper Saddle River, NJ: Prentice
Hall. https://doi.org/10.5555/1095587.

Rojas, R. 1997. Konrad Zuse’s legacy: The architecture of the Z1 and Z3. IEEE Annals of the
History of Computing 19(2): 5–16. https://doi.org/10.1109/85.586067.

Rojas, R. 1998b. How to make Konrad Zuse’s Z3 a universal computer. IEEE Annals of the History
of Computing 20(3): 51–54. https://doi.org/10.1109/85.707574.

von Neumann, J. 1945. First Draft of a Report on the EDVAC. Unpublished draft.
Zuse, K. 1943b. Rechenplangesteuerte Rechengeräte für technische und wissenschaftliche Rech-

nungen. Deutsches Museum Digital. http://digital.deutsches-museum.de/item/NL-207-0217/
Zuse, K. 1944d. Patentanmeldung Z-394: Rechenvorrichtung. Available online at the Zuse Internet

Archive.
Zuse, K. 1950. Patentschrift Nr.926449, Kombinierte numerische und nichtnumerische Rechen-

maschine. Deutsches Patentamt, 11 Seiten.
Zuse, K. 1952a. Bedienungsanweisung für Zuse Z4. Zurich: ETH Zurich. https://doi.org/10.7891/

e-manuscripta-98601.
Zuse, K. 1972. Der Plankalkül, vol. 63. Sankt Augustin: Berichte der Gesellschaft für Mathematik

und Datenverarbeitung.

https://doi.org/10.5555/1095587
https://doi.org/10.5555/1095587
https://doi.org/10.5555/1095587
https://doi.org/10.5555/1095587
https://doi.org/10.5555/1095587
https://doi.org/10.5555/1095587
https://doi.org/10.1109/85.586067
https://doi.org/10.1109/85.586067
https://doi.org/10.1109/85.586067
https://doi.org/10.1109/85.586067
https://doi.org/10.1109/85.586067
https://doi.org/10.1109/85.586067
https://doi.org/10.1109/85.586067
https://doi.org/10.1109/85.707574
https://doi.org/10.1109/85.707574
https://doi.org/10.1109/85.707574
https://doi.org/10.1109/85.707574
https://doi.org/10.1109/85.707574
https://doi.org/10.1109/85.707574
https://doi.org/10.1109/85.707574
http://digital.deutsches-museum.de/item/NL-207-0217/
http://digital.deutsches-museum.de/item/NL-207-0217/
http://digital.deutsches-museum.de/item/NL-207-0217/
http://digital.deutsches-museum.de/item/NL-207-0217/
http://digital.deutsches-museum.de/item/NL-207-0217/
http://digital.deutsches-museum.de/item/NL-207-0217/
http://digital.deutsches-museum.de/item/NL-207-0217/
http://digital.deutsches-museum.de/item/NL-207-0217/
http://digital.deutsches-museum.de/item/NL-207-0217/
https://doi.org/10.7891/e-manuscripta-98601
https://doi.org/10.7891/e-manuscripta-98601
https://doi.org/10.7891/e-manuscripta-98601
https://doi.org/10.7891/e-manuscripta-98601
https://doi.org/10.7891/e-manuscripta-98601
https://doi.org/10.7891/e-manuscripta-98601
https://doi.org/10.7891/e-manuscripta-98601
https://doi.org/10.7891/e-manuscripta-98601

Chapter 12
The First Code for Computer Chess

This chapter describes the first computer chess code ever written. A library of
computer chess functions was compiled around 1945 by Konrad Zuse, after he
had fled from Berlin to the Bavarian Alps during World War II. Zuse wrote the
code to illustrate the expressiveness of his “Plankalkül” (calculus of programs), the
high-level programming language he had been developing intermittently between
1942 and 1945. Zuse’s chess code was originally published in German in 1972.
However, due to the lack of a compiler for Plankalkül at the time, the code remained
unimplemented and untested until 1999. In that year, we developed a compiler for
Plankalkül and also rewrote Zuse’s chess functions in Java. As part of this effort, we
introduced a move generator and a user-friendly visual interface, allowing users to
easily manipulate chess pieces on a virtual chessboard and observe the computer’s
moves. Here we describe Zuse’s code, the state of computer chess by 1950, and
compare Zuse’s approach to Alan Turing’s chessboard evaluation strategy.

12.1 Computer Chess

Many printed and online publications commonly refer to Claude Shannon, the
renowned American mathematician, as the “father” of computer chess. However,
as we argue in what follows, this is not so—other scientists had dreamed of, or
designed specific mechanizations of different aspects of the game before Shannon’s
contributions became well known. Certainly, Shannon was the most influential
person in computer chess at the turn of the 1950s having published two widely
read articles describing how to program a computer to play chess (Shannon,
1950). Nathan Ensmenger, who has written a very comprehensive social history
of computer chess, puts emphasis on the fact that “it was the mathematician Claude
Shannon who wrote the very first article ever published on the art of programming
a computer to play chess” (Ensmenger, 2012).

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Rojas, Konrad Zuse’s Early Computers, History of Computing,
https://doi.org/10.1007/978-3-031-39876-6_12

191

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39876-6protect T1	extunderscore 12&domain=pdf
https://doi.org/10.1007/978-3-031-39876-6_12
https://doi.org/10.1007/978-3-031-39876-6_12
https://doi.org/10.1007/978-3-031-39876-6_12
https://doi.org/10.1007/978-3-031-39876-6_12
https://doi.org/10.1007/978-3-031-39876-6_12
https://doi.org/10.1007/978-3-031-39876-6_12
https://doi.org/10.1007/978-3-031-39876-6_12
https://doi.org/10.1007/978-3-031-39876-6_12
https://doi.org/10.1007/978-3-031-39876-6_12
https://doi.org/10.1007/978-3-031-39876-6_12
https://doi.org/10.1007/978-3-031-39876-6_12

192 12 The First Code for Computer Chess

However, there were at least two predecessors who either very carefully
described how to program a computer to play chess or even wrote substantial code
for a chess-playing program. The first was Alan Turing, the British mathematician,
who designed and executed a chess-playing program—by hand—and reported
on his work in 1953. The second was the German inventor Konrad Zuse, who
deserves credit for having written the world’s first chess code, although the library
of functions remained incomplete. Zuse’s chess code was finished in 1945, at the
time of his forced “exile” in the Alps. However, his notebooks contain sketches
of functions and subroutines for computer chess written years earlier, between
1941 and 1945. Unfortunately, the code, consisting of more than 100 functions
and comprising 50 printed pages, was not published until 1972, when Zuse’s book
about the “Plankalkül”, the high-level programming language he developed during
World War II, was printed in Germany (Zuse, 1972). The publication in German
went largely unnoticed outside the country, and to this day many books and online
archives about the history of computer chess have failed to register this achievement.

12.2 Prehistory of Computer Chess

Charles Babbage was apparently the first scientist to write about the possible
mechanization of chess. It is true that Wolfgang von Kempelen’s chess-playing
android had already been exhibited in Europe in the 18th century, but we now know
that an operator was hidden inside the so-called Mechanical Turk. None other than
Edgar Allan Poe published a short commentary trying to “reverse engineer” the
deception (Poe, 1836). Napoleon was fooled by the trick and was rather annoyed at
losing to a machine (as was Gary Kasparov many years later after losing to IBM’s
Deep Blue).

Babbage, who knew of Kempelen’s automaton, clearly saw that the regularity
and rule-driven nature of chess made it a good candidate for mechanization. He
certainly underestimated the challenge, but he wrote in “Passages of the Life
of a Philosopher” (1864) that while designing his Analytical Engine (which, if
completed, would have been the world’s first computer) he realized that “games
of purely intellectual skill” could be mechanized. He then proposed what would
be the first algorithmic description of the steps to be followed by a chess-playing
automaton: (1) evaluate the consistency of the board, (2) if the chess pieces have
consistent positions, has the machine lost? (3) if not, did it win? (4) if not, can it
win in one move? Make that move. (5) Can the opponent win in the next move?
(6) if so, prevent that move, (7) “If his adversary cannot win the game at his next
move, Automaton must examine whether he can make such a move that, if he were
allowed to have two moves in succession, he could at the second move have two
different ways of winning the game” (Babbage, 1864). Babbage then goes on to
underestimate the number of possible games when he thinks that his machine would
be able to consider all of them.

12.3 Enter Turing 193

The first real chess automaton was designed by the Spanish scientist Leonardo
Torres y Quevedo in Spain around 1910. He built a machine capable of playing
an endgame with a white king and rook against a black king (a KRK game).
The game started with both sides sufficiently separated, so it was just a matter of
maneuvering until the black king could be captured by the white pieces. Only five
different actions and eight conditional tests were required. The pieces were moved
by mechanical arms (later electromagnets), and the human opponent’s move was
sensed by electrical contacts on each square of the board (Randell, 1982a). Torres
y Quevedo’s chess automaton was demonstrated in 1912 and later at many other
scientific events in Europe, until 1950.

The first mathematician to consider chess and games as ordered sequences
of moves (in a decision tree) was Ernst Zermelo, who gave an address to the
International Congress of Mathematicians in Cambridge in 1912, stating that in
chess, white or black can force a win for either side, or both can force a draw, in less
than N moves, where N is the total number of positions available on the chessboard.
It has been said that this “Zermelo’s Theorem” is the first real mathematical analysis
of strategies in games (Zermelo, 2010). After the Second World War, computer
chess was obviously “in the air,” as can be read in a seminal book of that time,
Norbert Wiener’s Cybernetics. In this book, Wiener mentions chess as a type of
problem solvable by the general techniques investigated by John von Neumann and
by performing search in a decision tree.

12.3 Enter Turing

Alan Turing worked during the Second World War in the cryptanalytic unit
bunkered at Bletchley Park near London. One of the topics of discussion among the
mathematicians working there was the possible mechanization of chess (Copeland,
2004). Probably some of them had read Babbage or heard about Torres y Quevedo’s
machine. Turing was also aware of John von Neumann’s writings, having worked
with him in Princeton, and would have known of the publication of von Neumann
and Morgenstern’s book on game theory (von Neumann and Morgenstern, 1944).
In this book, the authors discuss games with “perfect information” (such as chess)
and possible strategies for rational players. However, they do not provide an actual
“algorithm” for playing the game—that would be the task of Turing and others.

Several of the Bletchley Park staff were accomplished chess players, including
James Macrae Aitken, the Scottish champion, and the 1938 English champion,
Hugh Alexander, who was also Turing’s successor as head of “Hut 8” at Bletchley
Park. Turing worked there until 1942 and then alternated between the USA and
England. He did consulting work for Bell Laboratories and met Claude Shannon
in early 1943, when they discussed their common interest in cryptography and
computing machines. Hodges mentions that Turing’s colleagues remembered that
he had been experimenting with the minimax and best-first heuristics for playing
chess at Bletchley Park since 1941 (Hodges, 2006).

194 12 The First Code for Computer Chess

Thus, the stage was set for the development of a chess-playing “algorithm,” i.e., a
set of rules and evaluation heuristics, which Turing perfected in collaboration with a
former student named D.G. Champernowne. The set of rules, apparently completed
and written down around 1948, while Turing was working at the National Physical
Laboratory in Manchester, was christened “Turochamp”.1 In 1952, Turing “ran” the
program on paper and lost a chess game to a colleague. Each move is said to have
taken 30 minutes to compute on paper. Turing describes his chess playing heuristics
in a paper written around 1953 (Turing, 1953).

Turing’s code first looks at all possible moves by white (all plies, a ply being
a move by one of the two opponents) and all possible responses by black. Then it
determines whether after two plies there are “considerable” moves or not. These are
white moves in which a piece can be captured, especially by a piece of lesser value,
or a check can be made. If black can recapture, that is also a possible move. A series
of captures–recaptures would then follow until the last capture. In principle, if no
captures are possible, only two moves would be considered and evaluated. Turing’s
evaluation function has a static part, considering only the values of the pieces and
a dynamic part, considering their positions on the board and their mobility. Turing
proposed to value each piece as follows: pawn 1, knight 3, bishop 3.5, rook 5, queen
10, and checkmate is valued with .±1000. More points are added according to the
square of the number of moves available to each piece, additional points are given
for protected pieces, and so on. Even pawns increase in value for each row they have
already moved. Turing’s evaluation function is not easy to compute by hand, since
it contains so many positional additional elements: 30 minutes of hand calculation
for each board evaluation seems to be a good approximation.

12.4 Zuse’s Chess-Playing Program

Konrad Zuse wrote the framework for a chess program between 1941 and 1945.
The final manuscript was completed after the war. Unable to resume work on his
computing machines, he decided to finish a theoretical treatise he had been working
on intermittently, detailing his ideas about general computation. This manuscript
became the Plankalkül (calculus of programs), which was published in the 1970s
with some additional notes and an introduction (Zuse, 1942c).

In the introduction to the Plankalkül, Zuse wrote that he had only learned to
play chess in 1937, because he thought that this game could be automated with the
help of calculating machines. Zuse’s notebooks (of which several hundred pages
survived the war) contain handwritten notes which confirm that he was thinking

1 In a letter from Turing to J.. Good in September 1948, Turing writes that he has not yet written
down the Turochamp rules, but intends to do so in order to play the Shaun-Michie “chess machine”
(Turing, 1948).

12.4 Zuse’s Chess-Playing Program 195

Fig. 12.1 Zones in the 8 by 8
squares chess board (from
Zuse’s notebooks, Zuse,
1941-1942)

about his Plankalkül and computerized chess during the war, at the same time as he
was building the Z4 and the special machines S1 and S2 (see Fig. 12.1).

Plankalkül was the first draft of a high-level programming language ever written
(because of its connection to chess, W. Bibel has called Plankalkül “the first AI
language” (Bibel, 2014)). Consider the early computers: Babbage’s machines were
programmed in “assembly language,” since the elementary processor instructions
were simply listed one by one. The ENIAC had to be hardwired to perform
any useful computation. The Harvard Mark I was also programmed in assembly
language. In fact, the first widely used programming languages did not appear until
the 1950s, especially when FORTRAN and COBOL took off.

In Plankalkül, variables are multidimensional arrays of bits. For example, a 32-bit
number would be represented as an array of 32 bits. A vector of ten 32-bit numbers
would be a double-indexed array of 10 times 32 bits. Indices allow the programmer
to access any component or subarray in an array. The elementary imperative
constructs of the language are the assignment of values and the evaluation of
complex arithmetic expressions. The language also includes an IF and a WHILE
statement, as well as function definition and function application. The only curious
aspect of the language syntax, from a modern perspective, is that Zuse wrote
variables as four-line structures. For example, the four lines

.

V
0
1

32.0

196 12 The First Code for Computer Chess

represent the variable V0, component 1, of type 32 bits. The addition of two such
variables V0 and V1 could be assigned to a result-variable V2 as follows:

.

V = V + V
2 0 1
1 1 1

32.0 32.0 32.0

Apart from this strange four-line notation, Plankalkül resembles a modern
generic imperative language with adequate programming constructs and the nec-
essary flexibility to write any desired program. Experienced programmers can learn
to code in Plankalkül in less than an hour. Zuse’s computer chess framework
constitutes the entire Chap. 5 in the Plankalkül manuscript. The main data structures
that Zuse designed for chess are:

(a) A representation of the current state of the board. This was done using an array
of 64 four-bit numbers. Four bits were needed to encode the binary ID of each of
the 12 possible pieces (six white and six black types) as well as the “cell-free”
value:

. Board = (x1, x2, . . . , x64),

where xi is the binary code of the chess piece or a free cell. The four-bit binary
codes were chosen so that the lowest bit represents the color (white or black) of
the piece.

(b) A representation of a position on the board. This was done using two integers x
and y, which take values from 0 to 7:

. Position = (x, y)

(c) A move representation, which is just an array of two positions on the board: the
start and end position, and a bit to describe the color of the piece being moved.

. Move = (V 0, V 1, s)

where V0 and V1 represent board positions, and s is 0 or 1.
(d) A table of values for each chess piece: the value for a pawn is 1, for the bishop

and knight it is 2, for the rook it is 3, 4 for the queen, and 5 for the the king. The
king’s value is superfluous since it is not used in any other chess function.

Zuse then wrote functions numbered from 1 to 203 (there are some gaps in the
numbering, so only about 120 functions were written). For example, one function
takes a board and a move as arguments and checks the validity of the move according
to the rules of chess. Another function takes two positions as arguments and checks

12.5 Move Generation in Zuse’s Notebooks 197

if they lie on a diagonal or a line on the board. The complete set of functions is
extensive because it is used to ensure that the rules of the game are followed.

However, Zuse overprogrammed. Some of the functions are superfluous for a real
game. One of them, for example, checks whether a given chess board is possible,
i.e., whether the total number of pieces of different types could have been produced
during a chess game. Since computer chess starts with a legal board, and all moves
by the human player or the computer are checked immediately, i.e., when they are
entered or produced, no illegal board can be generated during a game, so checking
the legality of the number of pieces with a special function is a nice programming
exercise, but not necessary.

Despite this overprogramming, it can be said that the auxiliary functions
contained in Chap. 5 of the Plankalkül are sufficient to implement a complete
game of chess, with one notable exception mentioned below. For example, there
are functions that test the king’s check, en passant captures, and the possibility of
castling. There is a function that, given a chessboard and a legal move, generates
the next board. How did Zuse compare alternative moves? An evaluation function
is needed, and here Zuse did not go much beyond counting pieces by their value.
Zuse’s evaluation function for a move is therefore trivial: each piece, except the
king, on the white side is multiplied by its value and the results are added. The same
is done for the black pieces. Zuse’s evaluation function is similar to Turing’s initial
evaluation of the board, but only the first step, before positional advantages are
considered and added to the final result. Zuse’s evaluation function is certainly not
very sophisticated. He was never a good chess player, and his evaluation function
reflects this fact.

12.5 Move Generation in Zuse’s Notebooks

The most important omission in Chap. 5 of Plankalkül is the move generation
function itself! In the introduction to the Plankalkül manuscript, Zuse wrote that he
had thought of some kind of minimax evaluation for the chess program, but he never
got around to writing down the code. Although the chess code in the Plankalkül
is extensive and contains dozens of auxiliary functions, the one really important
function (the move generator) is missing from the list of subroutines. Written in
parentheses (and this is actually the very last line of the 1945 text), we find the
words: “complete move generator.” Had Zuse considered programming a decision
tree or not? It is hard to imagine that he had not. Even Babbage, in his reflections
on automated chess, wrote that the sequence of moves and countermoves during
a game must be considered by the machine. Fortunately, we now have access to
parts of Zuse’s notebooks and on some pages dated 1941/1942 we do indeed find
evaluation trees for chess and sketches of their possible development. Figure 12.2
shows one of these sketches (from 1942) and Fig. 12.3 a decision tree.

As these sketches show, Zuse was well aware of the need to apply the evaluation
function at each level of the board, taking into account the opponent’s countermoves.

198 12 The First Code for Computer Chess

Fig. 12.2 A generic decision tree for chess. Note the calendar for 1941 (Zuse, 1941-1942)

Writing down the code was certainly difficult: it would have been the most difficult
coding example in the Plankalkül book. The necessary work was left for later, a time
that never came.

Claude Shannon did not have a chess program in 1949/50 when he published
his first papers on computer chess, but he had a good description of the necessary
steps. Shannon distinguished between a type A strategy, in which all combinations
of moves (one’s own and the opponent’s) are explored to a maximum depth, and
a type B strategy, in which only promising branches of the tree of possibilities
are expanded. Early computer chess programs used a Type A strategy, and Zuse’s
notebooks seem to indicate that this is what he had in mind for his chess program.
Turing followed a mixture of a type A and a type B strategy, because the fixed depth
level (two plies) could be extended in case a piece could be captured or revenged.

All early computer chess programs used brute force, i.e., an extensive search in
the move tree guided by a heuristic evaluation function. The method described by
Shannon in 1950 is now known as the “minimax algorithm.” It consists of selecting
the best possible move under the assumption that the opponent will also respond

12.6 Computer Chess After Zuse, Turing, and Shannon 199

Fig. 12.3 A decision tree for moves of white (W) and black (S) pieces. The meaning of the
numbers is unclear. Here the white pieces move first and reach a final state while the game proceeds
along the decision tree (Zuse, 1941-1942)

with his best move. The player moving a piece tries to maximize his gain according
to the evaluation function and the opponent tries to minimize it. The interplay of
these two intentions gives rise to the “minimax” strategy described by John von
Neumann in his study of game theory.

12.6 Computer Chess After Zuse, Turing, and Shannon

The first full chess program to run on a computer was written by Alex Bernstein and
others for an IBM 704 in 1957. It examined all future four-ply games (a move by
black or white is called a ply) in about 8 minutes and could win against amateurs.
A smaller program playing on a 6 by 6 board had been implemented a year earlier
on the MANIAC I, a computer built at Los Alamos National Laboratories. But the
first chess program that played in a real tournament was the legendary MacHack VI,
written by Richard Greenblatt for a PDP-6 at MIT. Later it was available on all PDP-

200 12 The First Code for Computer Chess

10 computers, a machine very popular at universities and research centers. It was the
first chess program I ever played against.

Although Herbert Simon and Allen Newell predicted in 1956 that a computer
program would become world champion within 10 years, several decades passed
before a computer could win a match against the world champion. The reason seems
to be that good human players can recognize patterns on the chess board that leads
them to consider only a handful of possible moves. While computer chess programs
can play decently because they examine thousands or millions of moves per second,
a human player applies a higher-level strategy. Good moves “pop up” in the mind
of a grandmaster, just as we recognize a human face in a crowd. The process of
recognition itself is not open to introspection. We do it, but we don’t know why.

In 1989, Deep Thought, a parallel chess machine built by a team led by Feng-
Hsiung Hsu, became the world champion in computer chess (Hsu et al., 1990).
Deep Thought achieved this result by using a large library of opening games and
raw computing power. Although the machine could examine 2 million moves per
second, Gary Kasparov easily defeated the program in the same year. That would
change the moment IBM hired the developers of Deep Thought with the medium-
term plan of overpowering Kasparov. The IBM machine, Deep Blue, a parallel
computer with 32 processors and 256 special chips, defeated Kasparov for the first
time under tournament conditions in 1996, but lost the series 4-2. Just 1 year later,
Kasparov lost the rematch 3.5 to 2.5 in a highly publicized event broadcast over
the Internet. With the world champion defeated, computer chess became something
of a solved problem, and the artificial intelligence community moved on to more
challenging areas. But Shannon, Turing, and Zuse would surely have been proud of
such an achievement.

References

Babbage, C. 1864. Passages from the life of a philosopher. London: Longman, Green, Longman,
Roberts & Green. https://doi.org/10.1017/CBO9781139103671.

Bibel, W. 2014. Artificial intelligence in a historical perspective. AI Communications 27(1): 87–
102. https://doi.org/10.3233/AIC-130576.

Copeland, B.J. 2004. The essential turing: The ideas that gave birth to the computer age. Oxford:
Oxford University Press. https://doi.org/10.1093/oso/9780198250791.001.0001.

Ensmenger, N. 2012. Is chess the drosophila of artificial intelligence? A social history of an
algorithm. Social Studies of Science 42(1): 5–30. https://doi.org/10.1177/0306312711424596

Hodges, A. 2006. Alan turing: The enigma. New York: Walker & Company
Hsu, F.H., Anantharaman, T., Campbell, M., and A. Nowatzyk. 1990. A Grandmaster chess

machine. Scientific American 263(4): 44–51.
von Neumann, J., and O. Morgenstern. 1944. Theory of games and economic behavior. Princeton:

Princeton University Press.
Poe, E.A. 1836. Maelzels chess player. Southern Literary Messenger 2: 318–326
Randell, B. 1982a. From analytical engine to electronic digital computer: The contributions of

ludgate, torres and bush. Annals of the History of Computing 4(4). https://doi.org/10.1109/
MAHC.1982.10042.

https://doi.org/10.1017/CBO9781139103671
https://doi.org/10.1017/CBO9781139103671
https://doi.org/10.1017/CBO9781139103671
https://doi.org/10.1017/CBO9781139103671
https://doi.org/10.1017/CBO9781139103671
https://doi.org/10.1017/CBO9781139103671
https://doi.org/10.3233/AIC-130576
https://doi.org/10.3233/AIC-130576
https://doi.org/10.3233/AIC-130576
https://doi.org/10.3233/AIC-130576
https://doi.org/10.3233/AIC-130576
https://doi.org/10.3233/AIC-130576
https://doi.org/10.3233/AIC-130576
https://doi.org/10.1093/oso/9780198250791.001.0001
https://doi.org/10.1093/oso/9780198250791.001.0001
https://doi.org/10.1093/oso/9780198250791.001.0001
https://doi.org/10.1093/oso/9780198250791.001.0001
https://doi.org/10.1093/oso/9780198250791.001.0001
https://doi.org/10.1093/oso/9780198250791.001.0001
https://doi.org/10.1093/oso/9780198250791.001.0001
https://doi.org/10.1093/oso/9780198250791.001.0001
https://doi.org/10.1093/oso/9780198250791.001.0001
https://doi.org/10.1177/0306312711424596
https://doi.org/10.1177/0306312711424596
https://doi.org/10.1177/0306312711424596
https://doi.org/10.1177/0306312711424596
https://doi.org/10.1177/0306312711424596
https://doi.org/10.1177/0306312711424596
https://doi.org/10.1109/MAHC.1982.10042
https://doi.org/10.1109/MAHC.1982.10042
https://doi.org/10.1109/MAHC.1982.10042
https://doi.org/10.1109/MAHC.1982.10042
https://doi.org/10.1109/MAHC.1982.10042
https://doi.org/10.1109/MAHC.1982.10042
https://doi.org/10.1109/MAHC.1982.10042
https://doi.org/10.1109/MAHC.1982.10042

References 201

Shannon, C.E. 1950. Programming a computer for playing chess. Philosophical Magazine 41:
256–275. https://doi.org/10.1007/978-1-4757-1968-0-1.

Turing, A. 1948. Document amt/k/1/77. Alan Turing Digital Archive.
Turing, A. 1953. Digital computers applied to games. In Faster Than Thought, ed. Bowden BV.

London: Sir Isaac Pitman & Sons Ltd.
Zermelo, E. 2010. Ernst Zermelo – collected works, 1st edn. Berlin, Heidelberg: Springer. https://

doi.org/10.1007/978-3-540-79384-7.
Zuse, K. 1941-1942. Stenografische Notizen zum Schachspiel. Deutsches Museum Digital. http://

digital.deutsches-museum.de/item/NL-207-0746/.
Zuse, K. 1942c. Vorarbeiten zum Plankalkül. Schachprogramme. Zuse Papers 012/012.
Zuse, K. 1972. Der Plankalkül, vol. 63. Sankt Augustin: Berichte der Gesellschaft für Mathematik

und Datenverarbeitung.

https://doi.org/10.1007/978-1-4757-1968-0-1
https://doi.org/10.1007/978-1-4757-1968-0-1
https://doi.org/10.1007/978-1-4757-1968-0-1
https://doi.org/10.1007/978-1-4757-1968-0-1
https://doi.org/10.1007/978-1-4757-1968-0-1
https://doi.org/10.1007/978-1-4757-1968-0-1
https://doi.org/10.1007/978-1-4757-1968-0-1
https://doi.org/10.1007/978-1-4757-1968-0-1
https://doi.org/10.1007/978-1-4757-1968-0-1
https://doi.org/10.1007/978-1-4757-1968-0-1
https://doi.org/10.1007/978-1-4757-1968-0-1
https://doi.org/10.1007/978-3-540-79384-7
https://doi.org/10.1007/978-3-540-79384-7
https://doi.org/10.1007/978-3-540-79384-7
https://doi.org/10.1007/978-3-540-79384-7
https://doi.org/10.1007/978-3-540-79384-7
https://doi.org/10.1007/978-3-540-79384-7
https://doi.org/10.1007/978-3-540-79384-7
https://doi.org/10.1007/978-3-540-79384-7
https://doi.org/10.1007/978-3-540-79384-7
https://doi.org/10.1007/978-3-540-79384-7
http://digital.deutsches-museum.de/item/NL-207-0746/
http://digital.deutsches-museum.de/item/NL-207-0746/
http://digital.deutsches-museum.de/item/NL-207-0746/
http://digital.deutsches-museum.de/item/NL-207-0746/
http://digital.deutsches-museum.de/item/NL-207-0746/
http://digital.deutsches-museum.de/item/NL-207-0746/
http://digital.deutsches-museum.de/item/NL-207-0746/
http://digital.deutsches-museum.de/item/NL-207-0746/
http://digital.deutsches-museum.de/item/NL-207-0746/

Chapter 13
The Reconstruction of Konrad Zuse’s Z3

This chapter describes our reconstruction of Konrad Zuse’s Z3, the first pro-
grammable computing machine in the world. The original Z3 was built in Berlin
between 1938 and 1941, it was destroyed in a bombing raid during World War II.
Our reconstruction project started in 1994 with a detailed study of the original
circuits and software simulations. Between 1999 and 2001, a functional replica
was built and unveiled at a conference commemorating the 60th anniversary of the
public presentation of the original machine. The hardware reconstruction of the Z3
is now part of the collection of the Konrad Zuse Museum in Hünfeld, Germany. As
part of our project, we also wrote Java simulations of components, of the whole
machine, and a 3D functional simulation of the Z3 and its user console. All of them
were available in the Konrad Zuse Internet Archive until browsers discontinued Java
applets.1

13.1 Introduction

Between 1999 and 2001, we built a replica of the computing machine Z3, designed
and constructed by the German inventor Konrad Zuse six decades before. Like
the original Z3, the replica was built in Berlin. It was the central piece at a
conference held in May 2001 in the German capital to commemorate “Sixty
Years of Computation.” It was a prolonged undertaking—the preparatory work for
making the reconstruction possible started almost 5 years earlier. During that time,
we studied the available documentation, conducted interviews with Konrad Zuse
himself (who died in 1995), wrote some simulations of parts of the machine, and
built a hardware replica of the addition unit of the Z3. Therefore, the final product,
the reconstructed Z3, is just like the tip of the iceberg: there is much more to building

1 Chapter based on Rojas et al. (2005).

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Rojas, Konrad Zuse’s Early Computers, History of Computing,
https://doi.org/10.1007/978-3-031-39876-6_13

203

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39876-6protect T1	extunderscore 13&domain=pdf
https://doi.org/10.1007/978-3-031-39876-6_13
https://doi.org/10.1007/978-3-031-39876-6_13
https://doi.org/10.1007/978-3-031-39876-6_13
https://doi.org/10.1007/978-3-031-39876-6_13
https://doi.org/10.1007/978-3-031-39876-6_13
https://doi.org/10.1007/978-3-031-39876-6_13
https://doi.org/10.1007/978-3-031-39876-6_13
https://doi.org/10.1007/978-3-031-39876-6_13
https://doi.org/10.1007/978-3-031-39876-6_13
https://doi.org/10.1007/978-3-031-39876-6_13
https://doi.org/10.1007/978-3-031-39876-6_13

204 13 The Reconstruction of Konrad Zuse’s Z3

a reproduction of a historical computer than just soldering old components. This
chapter is our account of our journey into history, about how the reconstruction
was made, and why it is important for historians of computing and for computer
scientists to pursue such projects.

The story of the original Z3 has been told many times. Here we provide only a
minimum of background. For a more detailed historical account, see Konrad Zuse’s
autobiography (Zuse, 1970), or Petzold’s history of early computing in Germany
(Petzold, 1992).

As early as 1935–1936, the student Zuse started thinking about programmable
mechanical calculators specially designed for engineers. His vision at the time, and
in the ensuing years, was the desktop calculating machine, not the large and bulky
supercomputer. As this vision slowly matured in his mind’s eye, Zuse took a series
of important and unconventional decisions.

His first peculiar decision was to build a fully binary machine. As a student,
Zuse had experimented with the binary system (on paper) and had rediscovered
Boolean logic. He realized that all computations could be reduced to binary logical
operations and saw in this fact an economy of means that could match his own
limited financial resources. Remember that most calculators built at the time used
an internal decimal representation.

Zuse’s second unconventional decision was to build a binary machine using
mechanical components. As a teenager, Zuse was a masterly machine builder and
won some prizes for his “building blocks” creations (a German version of Meccano
(Rojas, 2001)). He was not very familiar with electrical circuits and thought that
it would be easier to build a mechanical machine. He was also worried about the
reliability, cost, and size of a machine built with telephone relays. On the one
hand, a back-of-the-envelope calculation clearly showed that a relay machine would
be too heavy and expensive for its intended users. On the other hand, he had
infinite confidence in his mechanical prowess and in the possibility of miniaturizing
mechanical components in the future. As late as 1950, Zuse still believed that
mechanical memory components could be used in computers.

Zuse’s third unconventional decision was to resign from his job at a German
company in 1936, in order to build his machine and start a company of his
own. The Zuse Ingenieurbüro und Apparatebau start-up was, on paper, the first
computer company in the world. However, Zuse’s first real product would be the
Z4, finished in 1945 just weeks before the end of World War II, and delivered to
the Eidgenossische Hochschule (ETH) in Zurich as late as 1950! Untypical for
Germany, Konrad Zuse was perhaps the first computer entrepreneur in the world.
Karl Marx once wrote that in Germany everybody dreams of becoming a “civil
servant”—not Konrad Zuse, who was one of the few who foresaw an important
market for programmable personal calculating machines.

In what follows, we assume that the reader is familiar with the basics of the
architecture of the Z3, showcased by Zuse in 1941.

13.2 Architecture of the Z3 205

13.2 Architecture of the Z3

Figure 5.2 (on page 91) shows a block diagram of the architecture of Zuse’s Z3. The
main components are the 64-word memory, the separate floating-point processor
with two registers, the punched tape reading unit, the control unit, which decodes
an instruction read from the punched tape and orchestrates all data transfers inside
the machine, and the I/O devices. In the Z3, numbers were entered through a decimal
keyboard similar to those used in cash registers. The decimal exponent of a number
could be selected by pressing a button. The output was shown by switching on lamps
located behind an array of decimal digits. The exponent of the result was also shown
by switching on a light behind a line of exponents numbered from .−8 to +8.

As can be seen from the block diagram, the Z3 possessed a kind of “von
Neumann” architecture. The only exception would be the program being held
externally, but there was no way of affording the memory necessary to store
internally the user code, although Zuse thought about this possibility. Externally
held programs (or hardwired programs) were used in all early computers (Rojas and
Hashagen, 2001).

Figure 5.4 (page 96) shows the internal structure of the processor. Two addition
units are used, one for the floating-point exponents and one for the mantissas. In
the Z3, an argument for an arithmetical operation was stored in the register (Af,Bf),
where Af refers to the exponent, and Bf to the significand (mantissa) of the number.
The second argument was stored in the register (Ab,Bb). The register (Aa,Ba) was a
temporary register invisible to the programmer. The results of operations were stored
back in the register (Af,Bf). The addition units in the processor were integer units
that could operate on two’s complement binary numbers. That is, they could only
add numbers or their two’s complement. An instruction cycle of the Z3 was as long
as one addition step. All other operations were implemented using combinations
of additions and subtractions, which could operate on shifted arguments. Shifting
allows us to multiply and divide numbers faster. In this case, “fast” means 3 seconds
for a multiplication.

The original Z3 was destroyed during the war. However, in 1960, Konrad Zuse
built a reconstruction for Deutsches Museum in Munich, assisted by engineers
from his computer company. The machine was built to strengthen Zuse’s patent
application from 1941, which was still under review and which had been hotly
contested by computer companies, especially IBM. Eventually, the patent applica-
tion was rejected, as happened in the USA with the ENIAC patent application. The
reconstructed Z3 was later donated to Deutsches Museum in Munich.

The problem with the first reconstruction of the Z3 was that no additional
documentation was written. It can be safely said that only Konrad Zuse and two
of his assistant engineers knew how the machine worked. After the Zuse KG
disappeared in the late 1960s, only Konrad Zuse remained a witness of the Z3
technological history. Moreover, all published documents, even Konrad Zuse’s
memoirs, are very sketchy regarding the machine. One of the diagrams printed in the
autobiography, for example, is of the mechanical data flow in the Z1 but is labeled

206 13 The Reconstruction of Konrad Zuse’s Z3

as a diagram of the Z3. Therefore, Germany now had a reconstruction of the Z3, but
only few individuals understood how it once worked.

The Z3 went unnoticed in other countries for many years. The main publications
describing aspects of the Z3 were written in German and only a few were translated.
Most historians of computing in the USA and United Kingdom did not take notice
of the Z3 until new studies and appraisals started appearing in the 1970s and 1980s
(Ceruzzi, 1983).

13.3 The Konrad Zuse Internet Archive

In retrospect, we can date back our Z3 reconstruction project to 1994. At the time I
published a paper asking the old question of who had invented the computer (Rojas,
1994). By coincidence, in that same year, Konrad Zuse visited Freie Universität
Berlin, and I was able to discuss the matter with him. One of the frustrating aspects
of the debate in Germany about the invention of the computer was, at the time,
the lack of detailed information about the exact structure and capabilities of Zuse’s
machines. Konrad Zuse was very mellow, even when I questioned if the Z3 could
be called a computer. His supreme confidence put him above all such disputes. He
always thought of himself as the one and only inventor of the computer. But he was
intrigued by my questions and promised to send the Z3 patent application of 1941,
a document few people had seen and still fewer had fully understood.

The patent application for the Z3 arrived a few weeks later. The document is
difficult to read. The whole design of the machine is explained using relays and not
current digital design conventions. There is no good overview of the machine. The
reader has to go through individual circuits, one by one, trying to connect them into
an organized whole. The patent application itself also contains numerous misprints
that make it even more difficult to understand the machine. Zuse kept some details
of the construction for himself because, as he said during one of our interviews, he
did not want anybody at the patent office to get “too clever.”

Understanding the patent application of the Z3 was the first obstacle faced by our
project, but it could be mastered using modern circuit simulators. Several students
taking a seminar on the history of computing at FU Berlin wrote code for simulating
parts of the machine. In 1995, we had a functional emulation for Unix, which could
recreate the way the machine was used (the “look and feel”), but without simulating
the individual circuits. Later, at the University of Halle, Alexander Thurm wrote
his undergraduate thesis working under my direction. This was the breakthrough
we needed. The circuits in the patent application were deciphered one by one by
me, and Alexander Thurm implemented the inner workings of the Z3 using the
new programming language Java, just released a few months earlier. Our idea was
to write a simulation that could run on any kind of computer. The project was
successful: the complete Java simulation of the Z3 was operational and available on
the Internet in early 1996. Many programmers from all over the world took notice
and the website devoted to the simulation registered thousands of hits over several

13.3 The Konrad Zuse Internet Archive 207

Fig. 13.1 A screenshot of the Java simulation of the Z3. The left side shows the input console
(upper left) and the output display (lower left). The tape reader is visible, as well as the ALUs for
exponent and mantissa

months. A description of the simulation was published later in Dr. Dobb’s Journal,
a magazine for hardcore programmers usually not very interested in the history of
computing (Rojas, 2000).

Figure 13.1 shows a screenshot of the Java simulation. The user could start the
simulation using an Internet browser, enter numbers by clicking on the decimal
console, and start a program contained in a virtual tape or using the Z3 as a
calculator. The speed of the simulation matched the speed of the original machine.

The next step after having gotten the simulation to work, was to publish a
clear and commented description of the circuits. The first complete diagram of the
machine appeared in German in 1996 (Rojas, 1996b) and later on in English in 1997
(Rojas, 1997). The paper has been translated into Spanish, Polish, and Russian (see
Chap. 5).

Konrad Zuse’s patent application of 1941 was first published in 1998 in a book
that received much attention in interested circles in Germany (Rojas, 1998a). The
patent application was made available for the first time, together with long footnotes
and an accompanying description at several levels of detail. All circuits were

208 13 The Reconstruction of Konrad Zuse’s Z3

redrawn, and the book included the first really simple yet complete block diagram
of the machine, as well as the sequence of microinstructions associated with each
operation. As we now know, the Z3 contained micro-steppers that could be rewired
to implement complex operations. It was a kind of microcode before microcode.

Soon after the success of publishing the patent application, we decided to start
a more ambitious cataloging project of other documents. From 1999 to 2002, we
scanned and published on the Internet the main documents and notebooks produced
by Konrad Zuse from 1935 until his death. The notebooks are hard to read. They
usually include just diagrams and stenographic comments (we had to find people
able to read stenography). The material was scanned using the photocopies held
by the Heinz Nixdorf MuseumsForum in Paderborn. This paper archive was set up
by the Gesellschaft für Mathematik und Datenverarbeitung when Konrad Zuse was
still alive. The originals for the photocopies are now housed at Deutsches Museum
in Munich.

We brought the most important part of the Paderborn archive online. The Konrad
Zuse Internet Archive (at http://zuse.zib.de/) registers almost 100,000 visitors each
year. Many gigabytes of documents have been downloaded from the website.
Although we stopped scanning documents in 2002, the collection has grown,
because we also include theses, comments, and documents written by other people
about the work and life of Konrad Zuse. We have also published several circuit
simulations, mentioned in what follows.

13.4 Reconstruction of the Addition Unit

The second step toward a reconstruction of the Z3, after having understood and
simulated the circuits, was to build a subset of the addition unit using relays. We
decided to use smaller relays than those used by Zuse because we wanted to mount
the final product on a frame. The connections were made using a printed board
instead of loose cabling. This saved hours of soldering and manual work. Other
than that, the addition unit was a one-to-one reconstruction of the original addition
circuit of the Z3 and was mounted on a panel. We included two registers in the panel,
one for each integer argument (limited to 12 bits). Interested users can press buttons
to set the two binary arguments. The unit then computes the sum or difference,
according to the settings of a radio button. Each relay shows its on or off state with
a small red LED.

The addition unit works in three steps: first, the binary arguments are added,
without carry, then the carries for all positions are computed (using carry-look-
ahead), and in the third and final step, carries and partial sum are combined
into the final result. A switch allows the user to activate each step one after
the other, in order to be able to follow the computation. Figure 13.2 shows a
picture of the reconstructed addition unit. The circuits were drawn by Frank Darius,
the components were selected by Georg Heyne, and Cüneyt Göktekin wrote the
corresponding Java simulations. As can be seen in the picture, the panel contains

http://zuse.zib.de/
http://zuse.zib.de/
http://zuse.zib.de/
http://zuse.zib.de/

13.4 Reconstruction of the Addition Unit 209

Fig. 13.2 Panel with the reconstructed addition unit of the Z3. The text around the circuit explains
the operation of the adder. The upper two rows of buttons in the printed board allow the user to set
two numbers for addition or subtraction. All results are shown with LEDs

information about the addition unit and the circuits. Twelve panels were produced,
10 for German universities, one for the University of Pennsylvania (home of the
ENIAC), and one for Computer Museum in Mountain View, California. Figure 13.3
shows a Java simulation of the addition circuit (available also at the Konrad Zuse
Internet Archive). The simulation can run addition or subtraction forward or in
reverse (using the arrows), so that interested viewers can better grasp the addition
method.

We mention the reconstruction of the addition unit because it was a “proof
of concept” and because it illustrates the idea that guided us later during the
reconstruction of the complete Z3—we did not want to just build a replica of the
machine. The Z3 in Munich was already there. We wanted to build a machine that
would contain the original circuits, but would be “transparent,” one that could be
understood by interested people. We wanted to show the data flow in the machine
using LEDs, and to make possible single-step operation. This would make the Z3
understandable for anyone who has taken a first-year course in logic design. It would
save for posterity not just the flesh (the hardware) of the machine, but its spirit.

210 13 The Reconstruction of Konrad Zuse’s Z3

Fig. 13.3 Java simulation of the circuit for the addition unit (available on the Internet at the Konrad
Zuse Internet Archive http://zuse.zib.de/ until browsers discontinued Java applets)

13.5 Full Reconstruction of the Z3

After the addition unit was completed, we started thinking about a more ambitious
project, the reconstruction of the whole machine. Horst Zuse, the son of Konrad
Zuse, who had already closely followed our work with the addition unit, had been
thinking in the same way and it was natural that we should attempt to build the
machine together. Horst Zuse started a very serious and successful fundraising
effort. Especially through the generosity of private donors and some institutions,
it was possible to raise circa 75,000 US dollars, which went into the reconstruction
effort. In collaboration with Horst Zuse, we proceeded to do a full design of the
machine to be built.

Reconstructing the Z3 was largely a vast team effort. Raul Rojas wrote down
the block diagram of the circuits that would be implemented, taking them straight
out of the patent application. We decided to avoid building any mechanical parts
(the console, for example). Emphasis would be put on the logical circuits. The
mechanical console would be simulated with a computer display. The user would
interact with the virtual console by pressing buttons with the mouse. The tape
puncher would be also simulated with a computer. The reconstruction would

http://zuse.zib.de/
http://zuse.zib.de/
http://zuse.zib.de/
http://zuse.zib.de/

13.5 Full Reconstruction of the Z3 211

therefore consist of two large panels, one for the processor and another for the
memory, connected through a cable to the computer in which the console is
simulated. This arrangement should allow the machine to run for years to come
(at the time of this writing, it has been operational for 22 years).

Frank Darius produced detailed diagrams for each circuit. Since the cabling was
done using a printed circuit board and modern relays, some adaptations had to
be made. For example, where Zuse had used a relay with multiple connections,
sometimes we had to substitute using the available components. However, much
effort was made to limit the number of changes. The circuits in the reconstructed Z3
preserve, as well as possible, the original design of the Z3. Georg Heyne selected the
components to be used and led the layout and fabrication team at the Max-Planck-
Gesellschaft in Berlin. Peter Zilske acted as a consultant, and Torsten Vetter coupled
the reconstructed Z3 with the console computer. Wolfram Däumel did the layout of
the printed circuits and Lothar Schönbein soldered components. Cüneyt Göktekin
wrote a full Java emulation of the console, so that the Z3 could be operated as the
original was, but using the virtual console.

Figure 13.6 shows a photograph of the front and back views of the memory panel.
Figure 13.4 shows the front view of the processor and Fig. 13.5 the rear view. The
relays are visible, as are the connections made using ribbon cable or the lines printed
on the board.

In Fig. 13.4 the relays are clearly visible, arranged in rows. Each row is a register
or a partial result. Information flows from top to bottom when the processor is
working. After an addition step, the result is stored back to the top register and
the Z3 continues. Each relay has a small red LED glued to its lower edge.

Fig. 13.4 Frontal view of the processor (Photograph: G. Heyne)

212 13 The Reconstruction of Konrad Zuse’s Z3

Fig. 13.5 Rear view of the processor (Photograph: G. Heyne)

In Fig. 13.5 the ribbon cables are part of the bus in the Z3. It was easier to wire
parts of the machine using them. This limited the number of layers in the printed
circuit to two. Relays are also visible in the rear of the processor. These are the
relays used for opening or closing the data path.

Figure 13.6 shows the Z3 memory. Each memory word is a row of relays. Each
relay has a red LED underneath. The tree of lines is the decoding tree needed to
access one memory address and the circuit is the original one used by Zuse. Only
the arrangement is new: it illustrates the decoding tree structure of the circuit. Small
LEDs light up the path to a memory address that has been selected. The figure also
shows the rear view of the memory panel. Additional relays are also visible here.
The FPGAs on top allow us to connect the memory unit to a computer using a serial
cable. The memory unit was completed before the processor was ready, and we
could demonstrate the use of the Z3 memory using the virtual console without the
processor.

Of course, the original Z3 had no lights for signaling the state of components.
This is a pedagogical addition that we think greatly increases the value of the
machine. This Z3 was built to be understood. When the machine runs, the flickering
lights show which operation is being performed and the corresponding data flow.
It is an impressive experience to see the Z3 crunching numbers with its primitive
relays.

The clocking for the whole Z3 can be modified from the connected computer, so
that the machine runs at single step or at different speeds: faster than the original or
as fast as the original. This feature was important for debugging purposes when the
machine was being built and is used at the museum when the operation of the Z3 is
explained.

13.6 The Virtual Z3 213

Fig. 13.6 Frontal and rear views of the memory panel (Photograph: G. Heyne)

The reconstructed Z3 is resilient. Two years after we finished building the main
circuits, only one memory bit had failed. The corresponding relay was changed,
and no other error has been reported. This proves that our decision to eliminate all
moving parts and simulate the console with a computer screen was sound.

During a ceremony in March 2003, the Z3 was bought by the Konrad-Zuse-
Museum in Hünfeld, and private donations were paid back to the donors.

13.6 The Virtual Z3

Anyone interested in the architecture of the Z3 can now consult the original sources
stored in the Konrad Zuse Internet Archive. It is also possible to run simulations
of individual circuits. Our last addition was a 3D simulation of the Z3 kept in
Munich at Deutsches Museum. Dr. Martin Kurze and his student Alexander Knabner
programmed an interactive VRML model of the Z3. The Internet viewer can
navigate in a virtual room and see the machine from different perspectives. The
“skin” of the model is actual photographs of the Z3 reconstruction in Munich. The
user can enter numbers and start the program tape by pressing buttons in the 3D
console model (Fig. 13.7).

214 13 The Reconstruction of Konrad Zuse’s Z3

Fig. 13.7 The 3D model of the Z3

This VRML simulation of the Z3 complemented our hardware reconstruction.
Although the machine was in Munich, it was almost lost to history since, especially
after Zuse’s death, nobody else completely understood how it worked. Now the Z3
lives and computes again.

13.7 Conclusions

In 1997, when the first Java simulation of the Z3 was shown at Martin Luther
University by our student Alexander Thurm, one colleague asked the very same
question we have been hearing for years: “What is that good for?”. Explicitly
or implicitly, it is assumed that there is nothing new to learn and discover by
studying and reconstructing historical machines. Computer scientists disregard,
often with contempt, whatever results were obtained more than 10 years ago. In
a field that is advancing exponentially fast, according to Moore’s law, there is a
tendency to think there is no time to look back. Our answer, then and now, is
the following: preserving these old machines and understanding how they worked
means preserving an important part of our cultural heritage. As computer scientists,
we should be interested in knowing how our predecessors thought and by what

13.7 Conclusions 215

means they achieved the same objectives we have now. We are not “people without
history,” as the expression goes.

As scientists, we are interested in living not dead artifacts. The latter is any
machine in a museum, collecting dust, and which nobody knows how it once
worked. The living artifact is the machine whose inner workings we understand.
It is the machine whose intellectual content has been saved for posterity. It is the
machine that by working proclaims the greatness of its invention. Rebuilding older
computers means bringing them alive for future generations, and now more than
ever, since we can recreate old machines in virtual environments where everybody
can use and understand them.

Rebuilding old computers is first and foremost preserving culture (Fig. 13.8).
And there is also an important educational component. Our experience is that
computer science students often find seminars about the history of computing
boring—one of those requirements they just have to pass. However, when they have
to rebuild the machine by writing a functional simulation, they soon find out how
challenging the task is and how wonderful such old machines are. We have not
known a student, who having written a simulation of the Z3, Z1, ENIAC, or Turing’s
APL is not full of admiration for the inventors of these machines.

Rebuilding historical machines gives students a lesson they will never forget: we
all truly stand on the shoulders of giants.

Fig. 13.8 Five members of the Z3 reconstruction team. From left to right: Torsten Vetter, Lothar
Schönbein, Peter Zilske, Georg Heyne, and Raúl Rojas. Frank Darius, Cüneyt Göktekin, and
Wolfram Däumel are not in the picture (Photograph: G. Heyne)

216 13 The Reconstruction of Konrad Zuse’s Z3

Acknowledgments We would like to thank Horst Zuse, who made possible the reconstruction
project through his energy and untiring enthusiasm. Private donors financed the reconstruction.
Several institutions were also involved: the Konrad Zuse Gesellschaft, the Deutsche Forschungs-
gemeinschaft, the Konrad Zuse Zentrum, and the FU Berlin. Alexander Thurm wrote the Java
functional simulation. Other individuals who contributed are mentioned in the text. They all made
possible the success of our project. Many person-years went into the design of the reconstructed
Z3. For us, the more astonishing realization at the end of the project was that it took us almost as
long as it took Konrad Zuse to build the original Z3, although we had modern technology at our
command.

References

Ceruzzi, P.E. 1983. Reckoners: The prehistory of the digital computer, from relays to the stored
program concept, 1935–1945. Westport Connecticut: Greenwood Press.

Petzold, H. 1992. Moderne Rechenkünstler: die Industrialisierung der Rechentechnik in Deutsch-
land. Munich: C.H. Beck.

Rojas, R. 1994. On basic concepts of early computers in relation to contemporary computer
architectures. In IFIP 13th World Computer Congress, 324–331.

Rojas, R. 1996b. Die Architektur der Rechenmaschinen Z1 und Z3 von Konrad Zuse. Informatik-
Spektrum 19(6): 303–314. https://doi.org/10.1007/s002870050041.

Rojas, R. 1997. Konrad Zuse’s legacy: The architecture of the Z1 and Z3. IEEE Annals of the
History of Computing 19(2): 5–16. https://doi.org/10.1109/85.586067.

Rojas, R. 1998a. Die Rechenmaschinen von Konrad Zuse. Berlin: Springer-Verlag. https://doi.org/
10.1007/978-3-642-71944-8.

Rojas, R. 2000. Simulating Konrad Zuse’s computers. Dr Dobbs Journal 316: 64–69.
Rojas, R. 2001. Konrad Zuse – War der Erfinder des computers doch kein Musterschüler?

Telepolis.de
Rojas, R., and U. Hashagen. eds. 2001. The first computers: history and architectures. Cambridge,

MA: MIT Press
Rojas, R., Darius, F., Göktekin, C., and G. Heyne. 2005. The reconstruction of Konrad Zuse’s Z3.

IEEE Annals of the History of Computing 27(3): 23–32. https://doi.org/10.1109/MAHC.2005.
48.

Zuse, K. 1970. Der computer – Mein Lebenswerk. Landsberg: Verlag Moderne Industrie.

https://doi.org/10.1007/s002870050041
https://doi.org/10.1007/s002870050041
https://doi.org/10.1007/s002870050041
https://doi.org/10.1007/s002870050041
https://doi.org/10.1007/s002870050041
https://doi.org/10.1007/s002870050041
https://doi.org/10.1109/85.586067
https://doi.org/10.1109/85.586067
https://doi.org/10.1109/85.586067
https://doi.org/10.1109/85.586067
https://doi.org/10.1109/85.586067
https://doi.org/10.1109/85.586067
https://doi.org/10.1109/85.586067
https://doi.org/10.1007/978-3-642-71944-8
https://doi.org/10.1007/978-3-642-71944-8
https://doi.org/10.1007/978-3-642-71944-8
https://doi.org/10.1007/978-3-642-71944-8
https://doi.org/10.1007/978-3-642-71944-8
https://doi.org/10.1007/978-3-642-71944-8
https://doi.org/10.1007/978-3-642-71944-8
https://doi.org/10.1007/978-3-642-71944-8
https://doi.org/10.1007/978-3-642-71944-8
https://doi.org/10.1007/978-3-642-71944-8
https://doi.org/10.1109/MAHC.2005.48
https://doi.org/10.1109/MAHC.2005.48
https://doi.org/10.1109/MAHC.2005.48
https://doi.org/10.1109/MAHC.2005.48
https://doi.org/10.1109/MAHC.2005.48
https://doi.org/10.1109/MAHC.2005.48
https://doi.org/10.1109/MAHC.2005.48
https://doi.org/10.1109/MAHC.2005.48

Chapter 14
Epilogue

Due to the nature of the method shown, science presents itself as an intertwined
circle in which the beginning, the simple reason, loops back to the end, the
mediation. This circle is a circle of circles because each individual link, as an
animated part of the method, is a self-reflection that, while returning to the
beginning, is at the same time the beginning of a new link.1

As we conclude our tour through the intricate workings of Konrad Zuse’s
computer architectures, we bear witness to his most innovative decade—a span of
nearly 10 years of unprecedented creativity. I hope that with each passing chapter,
the reader could gain a clearer understanding of the progression of this story: from
Zuse’s earliest musings about computation and binary machines to the completed
Z4 and Plankalkül. What truly stands out in this long odyssey is Zuse’s early
development of the floating-point architecture, of “von Neumann” type, which he
deemed essential for his “computer for the engineer,” and his steadfast dedication to
it in all subsequent iterations, from the Z1 to the Z4, culminating in the proposal for
a high-level programming language.

Zuse was not a theorist like Turing. He had a very pragmatic approach to
computation, which he once simply defined as “obtaining new results from given
data.” To me, this suggests that once a formula or set of formulas is given, the
computation proceeds without the need to consider alternative paths. The example
he uses over and over again in various documents is the computation of determinants
or the computation of static force arrangements. Therefore, he did not include the
conditional branch in any of his early machines until the ETH asked him to add it
to the Z4. The absence of the conditional branch from the instruction set is indeed
puzzling, especially considering that the hardwired microcode of the Z1, and all the
way up to the Z4, was full of conditional tests and alternative computations. In the
Plankalkül draft, Zuse argues that the inclusion of a conditional branch instruction

1 Hegel, Wissenschaft der Logik.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Rojas, Konrad Zuse’s Early Computers, History of Computing,
https://doi.org/10.1007/978-3-031-39876-6_14

217

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39876-6protect T1	extunderscore 14&domain=pdf
https://doi.org/10.1007/978-3-031-39876-6_14
https://doi.org/10.1007/978-3-031-39876-6_14
https://doi.org/10.1007/978-3-031-39876-6_14
https://doi.org/10.1007/978-3-031-39876-6_14
https://doi.org/10.1007/978-3-031-39876-6_14
https://doi.org/10.1007/978-3-031-39876-6_14
https://doi.org/10.1007/978-3-031-39876-6_14
https://doi.org/10.1007/978-3-031-39876-6_14
https://doi.org/10.1007/978-3-031-39876-6_14
https://doi.org/10.1007/978-3-031-39876-6_14
https://doi.org/10.1007/978-3-031-39876-6_14

218 14 Epilogue

in the instruction set would have required more storage, so that the program could
be executed from the memory unit instead of from a punched tape (Zuse, 1972). It is
worth noting that even Babbage, in his design of the Analytical Engine, considered
the idea of rewinding the punched cards to implement conditional loops (Rojas,
2021b).

14.1 A Hierarchy of Architectural Levels

Now that we have a clear overview of the machines that Zuse designed up to 1945,
it is easy to see that he completed a theoretical program that he did not publish but
left sketched in his notebooks (at the time that he was finishing the Z1).

In his autobiography, Konrad Zuse refers to some important entries in this
notebook. On June 19, 1937, in the midst of constructing the rods and plates for
the Z1, he wrote in his shorthand notes: “Realization that there are elementary
operations in which all arithmetic and mental operations can be expressed. A
primitive type of mechanical brain consists of a memory unit, a control unit, and
a simple device capable of handling simple chains of two to three conditions. With
this type of brain, it should theoretically be possible to solve all mental problems
that can be captured by mechanisms, regardless of the time required.” (Figure 14.1
shows the drawing that goes with this quote).

What the young Zuse means by this, is that every computing machine consists
of logic gates, and every computation can be broken down into a combination of
elementary logic operations. In any given circuit, each bit can be computed, stored
temporarily, and be reused for subsequent operations. It is well known that the gates
AND, OR, and NOT provide a basis for logic operations, meaning that any computer
can be constructed with these building blocks. If one wants to use only one type of
gate, one can use NAND or NOR. The other operations can be obtained from these
basic components. Zuse also searched for this elementary operation and thought that
the equivalence of two bits (i.e., the negation of XOR) could be such a universal gate.

Fig. 14.1 Drawing of the basic computing machine. The instructions from the program (E) are
selected one by one by a controller (PL W) from the program memory (PL Sp). The instructions
are executed by the processor (Op) that can access the data memory (Sp) through the address
decoder (W)

14.1 A Hierarchy of Architectural Levels 219

He later realized that this was not the case. However, the key idea is that one can
build a computer with a minimal processor that actually performs only simple logic
operations of two bits in each cycle, stores the result, and then starts the next logic
operation. For this purpose, one only needs a very long memory for individual bits,
a processor that can execute atomic logic operations, and a long program, since any
complex computation (such as the sum of two 32-bit numbers) must be broken down
into many elementary operations. Instead of processing 32-bit words in parallel, the
operations are performed sequentially, i.e., bit by bit. This can reduce the complexity
of the computing machine to a minimum, if the execution time is not taken into
account. This is the earliest description of what would later become Zuse’s proposal
for a “logistic computer.”

In the summer of 1938, only one year after writing the aforementioned note, Zuse
returned to the problem and proposed a hierarchy of control mechanisms. Instead of
writing programs directly for the minimal machine, one could write programs using
high-level instructions, which are then interpreted by the hardware as a sequence of
microinstructions. For example, the multiplication operation can be transformed into
individual additions of the shifted multiplicand. An addition can also be transformed
into a sequence of operations, such as XOR of pairs of bits, carry calculations, and
another XOR of the intermediate results. Zuse wrote in 1938:

. E0 = Counter for main plan

. E1 = Counter for sub-plan.
(...)
For external commands, the currently operating controller . Ei provides the next command.
Internal commands cause a change in the relevant counter, with .E1 (sub-plan counter)
continuing from the desired instruction, and E0 continuing where it last left off.

This is actually what Zuse did in the Z3 and Z4. The . E0 controller selects the
arithmetic operations in the program, one by one, and the controller . E1 refers to the
rotary dials that reduce each arithmetic operation to a sequence of microinstructions.
The same was achieved in the Z1, but using a stack of addressable metal plates
(Fig. 14.2).

Fig. 14.2 In this drawing (Zuse notebooks, 1938) the program executed at the level . E0 transforms
into instructions for the lower level . E1 that are executed by the processor. Both controllers, . E0 and
. E1 keep track of their sequence of operations

220 14 Epilogue

Fig. 14.3 A full hierarchy of execution levels can be implemented. The highest-level description
of the computation at . E0 is transformed into instructions for level . E1. This level is transformed
into instructions for level . E2 and so on

Continuing in the same notebook, Zuse then proposes a complex hierarchy of
controllers and levels of description for the computation at hand. The highest-level
description is represented by “. E0”. The instructions in the controller . E0 transform
into instructions for the controller . E1, the instructions for . E1 into instructions for
the controller . E2 and so on. Zuse calls this “multiple nesting.” Note also that in the
diagram attached to the note, Zuse now fuses the program and data memory into a
single memory unit (Fig. 14.3).

This hierarchy of execution levels is exactly the concept that guided Zuse’s work
around the Plankalkül and the logic machine. The latter would be the minimal
processor, while even Plankalkül had at least two levels: in the “implicit form,” the
programmer only specified the computation using a predicate logic or set-theoretic
description (such as: “select all x that fulfill .f (x)”). This form was then transformed
into the “explicit form,” which is the required imperative program that represents (or
implements) the desired computation. The implicit form would be the . E0 level in
the diagram and the explicit form would be the . E1 level. Then we would need an
interpreter .E2 for the individual Plankalkül imperative statements, a level .E3 for
the execution of arithmetic operations, and so on. At the end of the chain, we would
have the logic operations provided by the logic machine. It is evident that toward the
end of his most creative period, Zuse successfully completes the theoretical program
he initially sketched in 1937/38.

If ever there was a “discursive circumnavigation,” like the one described by
Hegel in the quote that opens this chapter, it is this one. By 1945, Zuse develops
the highest level for the specification of computations (the predicate calculus form
of Plankalkül) and grounds everything on a minimal computer actually quite similar
to a Turing machine (without being equivalent).

Alan Turing would have been proud of the young Zuse.

14.2 Celebrating the Z1 in 2038? 221

14.2 Celebrating the Z1 in 2038?

But there is one more thing: I hope that we will be able to resurrect the Z1 before
2038, one hundred years after its creation. Not with metal plates, but as a virtual 3D
reconstruction in the computer. What we need to do is to capture photographically
every single component of the machine, so that we can write a 3D simulation of the
interplay of all parts. Allow me to elaborate.

The reconstruction of the Z1 in the German Museum of Technology in Berlin
was built using many layers of mechanical components (see Fig. 14.4). The different
layers can be removed, starting from the top, one by one. We can position a digital
camera above the machine and take pictures of every single component (except bolts
and screws), before removing them from the Z1. To have a 3D reference, we could
place red dots on each photographed component to capture its exact placement. The
camera can be calibrated so that pixel values can be reliably associated with 3D-
Euclidian coordinates. The thickness of each component can be manually measured.

Once a component has been removed from a layer, it is placed on a stage below a
second camera. An image is taken. The background will have a salient color (blue,
for example) so that all the edges of the components can be detected automatically.
Since Zuse used mainly flat plates and some rods, in most cases there is no need
for a 3D measurement. The 2D image from the camera is sufficient. Moreover, the
dimensions of the parts were drawn in the 1980s using a grid, and this grid provides
a very good initial reference for the dimensions of each part.

Fig. 14.4 The reconstructed Z1 in the German Museum of Technology in Berlin

222 14 Epilogue

Levers and rods will be handled as special cases. Some levers are composite
assemblies of primitive shapes. Vertical rods will be just defined by hand (their
radius is the same everywhere, only their height is variable). It is more difficult to
capture the levers in the lowest part of the machine. These levers are used to carry
the machine cycling pulses. They are few and could be measured manually.

A 2D-CAD model can be automatically generated from the images of the
components. The position of each part in the machine is given by the image taken
before with the ceiling camera. A computer can put together the CAD models of all
the parts and generate a genuine and accurate virtual model of the Z1. Some manual
intervention might be required to make all parts fit, but it would be minimal. In fact,
we have already simulated subcomponents of the Z1, such as the addition unit (see
Fig. 14.5), using Zuse’s patents’ applications as a reference (which unfortunately do
not cover the complete and exact design of the Z1).

Fig. 14.5 Virtual simulation of a mechanical binary adder using Zuse’s mechanical components
(Mischek, 2012)

14.3 Acknowledgments for Figures 223

The most challenging aspect of the project is dismantling the machine, layer by
layer, with the utmost care to ensure successful reassembly. The generation of the
CAD model could be created simultaneously with the mechanical work. The time
required to capture all the parts is perhaps twice the time required to disassemble
and reassemble the machine.

Then we could write a simulation. The different parts of the Z1 can adopt one of
two positions (0 or 1). Only the pins used for connecting layers can have more than
two positions. The important thing is that a simulation can be derived from the CAD
model, without having to simulate the physics of the mechanical parts, because all
the movements represent the data processing logic. For example, if we know that
a bit that was 0 has been reset to 1, we know that the corresponding mechanical
part has moved from its 0-position to its 1-position. Therefore, we only need to
put together a model of the logical connections of all the parts in the machine (the
detailed computational model, in fact) and then the movement of the virtual parts
can be generated by the model, following the cycles of the machine.

Thus, it would be feasible to simulate the 30,000+ parts of the machine (for
6000 gates) in real time. Users would be able to input their own numerical data
and actively interact with the Z1 simulation. Initially, we may target a desktop
application, but it may also be possible to run the simulation from a web browser.
While the primary goal of this project would be to create a simulation, there is the
intriguing possibility of producing miniature or full-scale 3D models of the Z1 for
museums around the world. These models, while non-functional, could be printed
using materials such as titanium or other metals.

We could thus celebrate the Z1, the first German computer, by doing something
extraordinary: reviving it. I hope that, when this happens, this book will be
remembered as an important milestone toward a greater understanding of Zuse’s
early computers and for their preservation as an invaluable part of the world’s
cultural heritage. I sincerely hope that some future readers will rally around this
wonderful endeavor.

14.3 Acknowledgments for Figures

The great majority of the illustrations for this book were drawn by the author
or produced for the author by illustrators. Some diagrams are from our public
domain repository Konrad Zuse Internet Archive. Some photographs were part of
our projects with the Archive or the reconstruction of the Z3. The table below
provides an overview of the individual sources of certain photographs and diagrams.

224 14 Epilogue

Figure Page Attribution

xi Konrad Zuse Internet Archive: http://zuse.zib.de/

1.2 3 Zuse (1970)

1.3 4 Zuse (1970)

1.4 6 Deutsches Museum, Munich, Archive CD-57258

2.1 25 Wikimedia Commons, public domain

2.2 23 University Archives Princeton University

2.3 25 Original Author: User:San Jose Derivative Author: User:ArmadniGeneral
(https://commons.wikimedia.org/wiki/File:Second-world-war-europe-1941-
1942-map-en.png), “Second world war europe 1941–1942 map en”, https://
creativecommons.org/-licenses/by-sa/3.0/legalcode

2.4 27 Hopper et al. (1946)

2.5 28 Wikimedia Commons, public domain

2.6 29 Wikimedia Commons, public domain

2.7 34 Deutsches Museum, Munich, Archive CD-57196

5.1 90 Konrad Zuse Internet Archive: http://zuse.zib.de/

8.1 136 Deutsches Museum, Munich, Archive CD-67142

8.3 140 ETH Library

8.5 144 Deutsches Museum, Munich, Archive CD-73322

7.1 121 public domain

7.2 122 Wikimedia Commons, public domain

References

Bower, T. 1987. The paperclip conspiracy – The hunt for Nazi scientists. Boston: Little, Brown and
Company.

Giles, G.J. 1985. Students and national socialism in Germany. Princeton: Princeton University
Press.

Hopper, G.M., Aiken, H.H., Bloch, R.M., and R.L. Hawkins. 1946. A manual of operation for the
automatic sequence controlled calculator, vol. 1. Cambridge, MA: Harvard University Press.

Mischek, J. 2012. 3D-Simulation des Additionswerkes der Z1 von Konrad Zuse. Master’s thesis,
Freie Universität Berlin.

Rojas, R. 2021b. The computer programs of Charles Babbage. IEEE Annals of the History of
Computing 43(1): 6–18. https://doi.org/10.1109/MAHC.2020.3045717.

Zuse, K. 1936d. Patentanmeldung Z 23 139 IX / 42m: Verfahren zur selbsttätigen Durchführung
von Rechnungen mit Hilfe von Rechenmaschinen [für Zuse]. Deutsches Museum Digital.
http://digital.deutsches-museum.de/item/NL-207-0990/.

Zuse, K. 1970. Der computer – Mein Lebenswerk. Landsberg: Verlag Moderne Industrie.
Zuse, K. 1972. Der Plankalkül (vol. 63). Sankt Augustin: Berichte der Gesellschaft für Mathematik

und Datenverarbeitung.

http://zuse.zib.de/
http://zuse.zib.de/
http://zuse.zib.de/
http://zuse.zib.de/
https://commons.wikimedia.org/wiki/File:Second-world-war-europe-1941-1942-map-en.png
https://commons.wikimedia.org/wiki/File:Second-world-war-europe-1941-1942-map-en.png
https://commons.wikimedia.org/wiki/File:Second-world-war-europe-1941-1942-map-en.png
https://commons.wikimedia.org/wiki/File:Second-world-war-europe-1941-1942-map-en.png
https://commons.wikimedia.org/wiki/File:Second-world-war-europe-1941-1942-map-en.png
https://commons.wikimedia.org/wiki/File:Second-world-war-europe-1941-1942-map-en.png
https://commons.wikimedia.org/wiki/File:Second-world-war-europe-1941-1942-map-en.png
https://commons.wikimedia.org/wiki/File:Second-world-war-europe-1941-1942-map-en.png
https://commons.wikimedia.org/wiki/File:Second-world-war-europe-1941-1942-map-en.png
https://commons.wikimedia.org/wiki/File:Second-world-war-europe-1941-1942-map-en.png
https://commons.wikimedia.org/wiki/File:Second-world-war-europe-1941-1942-map-en.png
https://commons.wikimedia.org/wiki/File:Second-world-war-europe-1941-1942-map-en.png
https://commons.wikimedia.org/wiki/File:Second-world-war-europe-1941-1942-map-en.png
https://commons.wikimedia.org/wiki/File:Second-world-war-europe-1941-1942-map-en.png
https://commons.wikimedia.org/wiki/File:Second-world-war-europe-1941-1942-map-en.png
https://creativecommons.org/-licenses/by-sa/3.0/legalcode
https://creativecommons.org/-licenses/by-sa/3.0/legalcode
https://creativecommons.org/-licenses/by-sa/3.0/legalcode
https://creativecommons.org/-licenses/by-sa/3.0/legalcode
https://creativecommons.org/-licenses/by-sa/3.0/legalcode
https://creativecommons.org/-licenses/by-sa/3.0/legalcode
https://creativecommons.org/-licenses/by-sa/3.0/legalcode
https://creativecommons.org/-licenses/by-sa/3.0/legalcode
https://creativecommons.org/-licenses/by-sa/3.0/legalcode
http://zuse.zib.de/
http://zuse.zib.de/
http://zuse.zib.de/
http://zuse.zib.de/
https://doi.org/10.1109/MAHC.2020.3045717
https://doi.org/10.1109/MAHC.2020.3045717
https://doi.org/10.1109/MAHC.2020.3045717
https://doi.org/10.1109/MAHC.2020.3045717
https://doi.org/10.1109/MAHC.2020.3045717
https://doi.org/10.1109/MAHC.2020.3045717
https://doi.org/10.1109/MAHC.2020.3045717
https://doi.org/10.1109/MAHC.2020.3045717
http://digital.deutsches-museum.de/item/NL-207-0990/
http://digital.deutsches-museum.de/item/NL-207-0990/
http://digital.deutsches-museum.de/item/NL-207-0990/
http://digital.deutsches-museum.de/item/NL-207-0990/
http://digital.deutsches-museum.de/item/NL-207-0990/
http://digital.deutsches-museum.de/item/NL-207-0990/
http://digital.deutsches-museum.de/item/NL-207-0990/
http://digital.deutsches-museum.de/item/NL-207-0990/
http://digital.deutsches-museum.de/item/NL-207-0990/

References

Aiken, H.H., and G.M. Hopper. 1982. The Automatic Sequence Controlled Calculator. In The
Origins of Digital Computers, ed. B. Randell, 203–222. Monographs in Computer Science.
Berlin: Springer. https://doi.org/10.1109/EE.1946.6434251.

Anonymous. 1947. Objective List of German and Austrian Scientists. Joint Intelligence Objectives
Agency.

Anonymous. 1981. Documentation: Konrad Zuse and the Early Days of Scientific Computing at
the ETH. ETH Zurich, 17.6.-15.7.1981, the documentation contains the list of commands for
the Z4.

Anonymous. 1995. Erklärung des Fachbereichs 10, TU Intern, Newsletter.
Arefi, F., Hughes, C.E., and D.A. Workman. 1990. Automatically generating visual syntax-directed

editors. Communications of the ACM 33(3): 349–360. https://doi.org/10.1145/77481.77487.
Babbage, C. 1864. Passages from the life of a philosopher. London: Longman, Green, Longman,

Roberts & Green. https://doi.org/10.1017/CBO9781139103671.
Bauer, F.L. 2008. Über “Episoden aus den Anfängen der Informatik an der ETH” von A. Speiser.

Informatik-Spektrum 31(6): 600–612. https://doi.org/10.1007/s00287-008-0291-8.
Bauer, F.L. 2009. Helmut Schreyer – ein Pionier des “elektronischen“ Rechnens. In Historische

Notizen zur Informatik. Berlin: Springer. https://doi.org/10.1007/978-3-540-85790-7.
Bibel, W. 2014. Artificial intelligence in a historical perspective. AI Communications 27(1): 87–

102. https://doi.org/10.3233/AIC-130576.
Bibel, W. 2020. On the development of AI in Germany. Künstliche Intelligenz 34(2): 251–258.

https://doi.org/10.1007/s13218-020-00654-x. Open Access https://rdcu.be/b3oxS.
Bower, T. 1987. The paperclip conspiracy – The hunt for Nazi scientists. Boston: Little, Brown and

Company.
Bromley, A.G. 2000. Babbage’s analytical engine plans 28 and 28a – The programmer’s interface.

Annals of the History of Computing 22(4): 5–19. https://doi.org/10.1109/85.887986.
Bruderer, H. 2012. Konrad Zuse und die Schweiz: Wer hat den Computer erfunden? Munich:

Oldenbourg Wissenschaftsverlag. https://doi.org/10.1524/9783486716658.
Bruderer, H. 2020. Milestones in Analog and Digital Computing. Vols. 1 and 2, 3rd ed., 2075.

Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-030-40974-6.
Burks, A.R., and A.W. Burks. 1988. The First Electronic Computer – The Atanasoff Story. Ann

Arbor: The University of Michigan Press.
Burks, A.W., and A.R. Burks. 1981. The ENIAC: First General-Purpose Electronic Computer.

Annals of the History of Computing 3 (4): 310–399, https://doi.org/10.1109/MAHC.1981.
10043.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Rojas, Konrad Zuse’s Early Computers, History of Computing,
https://doi.org/10.1007/978-3-031-39876-6

225

https://doi.org/10.1109/EE.1946.6434251
https://doi.org/10.1109/EE.1946.6434251
https://doi.org/10.1109/EE.1946.6434251
https://doi.org/10.1109/EE.1946.6434251
https://doi.org/10.1109/EE.1946.6434251
https://doi.org/10.1109/EE.1946.6434251
https://doi.org/10.1109/EE.1946.6434251
https://doi.org/10.1109/EE.1946.6434251
https://doi.org/10.1145/77481.77487
https://doi.org/10.1145/77481.77487
https://doi.org/10.1145/77481.77487
https://doi.org/10.1145/77481.77487
https://doi.org/10.1145/77481.77487
https://doi.org/10.1145/77481.77487
https://doi.org/10.1145/77481.77487
https://doi.org/10.1017/CBO9781139103671
https://doi.org/10.1017/CBO9781139103671
https://doi.org/10.1017/CBO9781139103671
https://doi.org/10.1017/CBO9781139103671
https://doi.org/10.1017/CBO9781139103671
https://doi.org/10.1017/CBO9781139103671
https://doi.org/10.1007/s00287-008-0291-8
https://doi.org/10.1007/s00287-008-0291-8
https://doi.org/10.1007/s00287-008-0291-8
https://doi.org/10.1007/s00287-008-0291-8
https://doi.org/10.1007/s00287-008-0291-8
https://doi.org/10.1007/s00287-008-0291-8
https://doi.org/10.1007/s00287-008-0291-8
https://doi.org/10.1007/s00287-008-0291-8
https://doi.org/10.1007/s00287-008-0291-8
https://doi.org/10.1007/978-3-540-85790-7
https://doi.org/10.1007/978-3-540-85790-7
https://doi.org/10.1007/978-3-540-85790-7
https://doi.org/10.1007/978-3-540-85790-7
https://doi.org/10.1007/978-3-540-85790-7
https://doi.org/10.1007/978-3-540-85790-7
https://doi.org/10.1007/978-3-540-85790-7
https://doi.org/10.1007/978-3-540-85790-7
https://doi.org/10.1007/978-3-540-85790-7
https://doi.org/10.1007/978-3-540-85790-7
https://doi.org/10.3233/AIC-130576
https://doi.org/10.3233/AIC-130576
https://doi.org/10.3233/AIC-130576
https://doi.org/10.3233/AIC-130576
https://doi.org/10.3233/AIC-130576
https://doi.org/10.3233/AIC-130576
https://doi.org/10.3233/AIC-130576
https://doi.org/10.1007/s13218-020-00654-x
https://doi.org/10.1007/s13218-020-00654-x
https://doi.org/10.1007/s13218-020-00654-x
https://doi.org/10.1007/s13218-020-00654-x
https://doi.org/10.1007/s13218-020-00654-x
https://doi.org/10.1007/s13218-020-00654-x
https://doi.org/10.1007/s13218-020-00654-x
https://doi.org/10.1007/s13218-020-00654-x
https://doi.org/10.1007/s13218-020-00654-x
https://rdcu.be/b3oxS
https://rdcu.be/b3oxS
https://rdcu.be/b3oxS
https://rdcu.be/b3oxS
https://doi.org/10.1109/85.887986
https://doi.org/10.1109/85.887986
https://doi.org/10.1109/85.887986
https://doi.org/10.1109/85.887986
https://doi.org/10.1109/85.887986
https://doi.org/10.1109/85.887986
https://doi.org/10.1109/85.887986
https://doi.org/10.1524/9783486716658
https://doi.org/10.1524/9783486716658
https://doi.org/10.1524/9783486716658
https://doi.org/10.1524/9783486716658
https://doi.org/10.1524/9783486716658
https://doi.org/10.1524/9783486716658
https://doi.org/10.1007/978-3-030-40974-6
https://doi.org/10.1007/978-3-030-40974-6
https://doi.org/10.1007/978-3-030-40974-6
https://doi.org/10.1007/978-3-030-40974-6
https://doi.org/10.1007/978-3-030-40974-6
https://doi.org/10.1007/978-3-030-40974-6
https://doi.org/10.1007/978-3-030-40974-6
https://doi.org/10.1007/978-3-030-40974-6
https://doi.org/10.1007/978-3-030-40974-6
https://doi.org/10.1007/978-3-030-40974-6
https://doi.org/10.1109/MAHC.1981.10043
https://doi.org/10.1109/MAHC.1981.10043
https://doi.org/10.1109/MAHC.1981.10043
https://doi.org/10.1109/MAHC.1981.10043
https://doi.org/10.1109/MAHC.1981.10043
https://doi.org/10.1109/MAHC.1981.10043
https://doi.org/10.1109/MAHC.1981.10043
https://doi.org/10.1109/MAHC.1981.10043
https://doi.org/10.1007/978-3-031-39876-6
https://doi.org/10.1007/978-3-031-39876-6
https://doi.org/10.1007/978-3-031-39876-6
https://doi.org/10.1007/978-3-031-39876-6
https://doi.org/10.1007/978-3-031-39876-6
https://doi.org/10.1007/978-3-031-39876-6
https://doi.org/10.1007/978-3-031-39876-6
https://doi.org/10.1007/978-3-031-39876-6
https://doi.org/10.1007/978-3-031-39876-6
https://doi.org/10.1007/978-3-031-39876-6

226 References

Butzer, P.L., M.M. Dodson, P.J.S. Ferreira, J.R. Higgins, O. Lange, and P. Seidler. 2009. Herbert
Raabe’s Work in Multiplex Signal Transmission and His Development of Sampling Methods.
Signal Processing 90 (5): 1436–1455. https://doi.org/10.1016/j.sigpro.2009.11.018.

Campbell-Kelly, M., W. Aspray, N. Ensmenger, and J.R. Yost. 2013. Computer: A History
of the Information Machine. 3rd ed. The Sloan Technology Series. https://doi.org/10.4324/
9780429495373.

Ceruzzi, P.E. 1983. Reckoners: The prehistory of the digital computer, from relays to the stored
program concept, 1935–1945. Westport Connecticut: Greenwood Press.

Copeland, B.J. 2004. The essential turing: The ideas that gave birth to the computer age. Oxford:
Oxford University Press. https://doi.org/10.1093/oso/9780198250791.001.0001.

Czauderna, K.H. 1979. Konrad Zuse, der Weg zu seinem Computer Z3. In Berichte der
Gesellschaft für Mathematik und Datenverarbeitung. Munich: Oldenbourg Verlag.

Delius, F.C. 2009. Die Frau, für die ich den Computer erfand. Berlin: Rowohlt Verlag.
Ensmenger, N. 2012. Is chess the drosophila of artificial intelligence? A social history of an

algorithm. Social Studies of Science 42(1): 5–30. https://doi.org/10.1177/0306312711424596.
Giles, G.J. 1985. Students and national socialism in Germany. Princeton: Princeton University

Press.
Goldstine, H.H., and A. Goldstine. 1996. The electronic numerical integrator and computer

(ENIAC). Annals of the History of Computing 18(1): 10–16. https://doi.org/10.1109/85.
476557.

Grosch, J., and H. Emmelmann. 1991. A tool box for compiler construction. In Compiler
Compilers. CC 1990, ed. D Hammer. Lecture Notes in Computer Science, vol. 477, 106–116.
Berlin, Heidelberg: Springer. https://doi.org/10.1007/3-540-53669-8-77.

Hachtmann, R. 2003. Science Management in the “Third Reich”. History of the General
Administration of the Kaiser Wilhelm Society. Göttingen: Wallstein Verlag.

Harel, D. 1980. On Folk Theorems. Communications of the ACM 23(7): 379–389. https://doi.org/
10.1145/358886.358892.

Hodges, A. 2006. Alan turing: The enigma. New York: Walker & Company.
Hopper, G.M., Aiken, H.H., Bloch, R.M., and R.L. Hawkins. 1946. A manual of operation for the

automatic sequence controlled calculator, vol. 1. Cambridge, MA: Harvard University Press.
Hsu, F.H., Anantharaman, T., Campbell, M., and A. Nowatzyk. 1990. A Grandmaster chess

machine. Scientific American 263(4): 44–51.
Ibarra, O.H., S. Moran, L.E. Rosier. 1983. On the Control Power of Integer Division. Theoretical

Computer Science 24(1): 35–52. https://doi.org/10.1016/0304-3975(83)90129-9.
Jarausch, K.H. 1993. The Expulsion of Jewish Students and Professors from Berlin University

under the Nazi Regime. Lecture June 15.
Knuth, D.E. 1981. The Art of Computer Programming – Seminumerical Algorithms, Vol. 2. Boston:

Addison-Wesley Professional.
Koren, I. 1993. Computer Arithmetic Algorithms. Englewood Cliffs: Prentice Hall.
Kurrer, K.E. 2010. Konrad Zuse und die Baustatik – Zur Vorgeschichte der Computerstatik (Teil

I). Bautechnik 87 (11). https://doi.org/10.1002/bate.201010046
Lavington, S.H. 1975. A History of Manchester Computers. Manchester: Blackwell Publishers.
Materna, H. 2010. Die Geschichte der Henschel Flugzeug-Werke in Schönefeld bei Berlin 1933-

1945. Bad Langensalza: Verlag Rockstuhl.
Meyer, B. 2000. Berlin – Stadt der Nobelpreisträger. Berlinische Monatsschrift 6. https://

berlingeschichte.de/bms/bmstxt00/0004prol.htm.
Minsky. M.L. 1967. Computation: finite and infinite machines. Upper Saddle River, NJ: Prentice

Hall. https://doi.org/10.5555/1095587.
Mischek, J. 2012. 3D-Simulation des Additionswerkes der Z1 von Konrad Zuse. Master’s thesis,

Freie Universität Berlin.
Pannke, K. 1927. Rechenvorrichtung. German Patent Office, Patent 447780.
Péter, R. 1967. Recursive Functions. New York: Academic Press.
Petzold, H. 1985. Computing Machines – A Historical Study of their Manufacture and Use from

the Empire to the Federal Republic. Düsseldorf: VDI Verlag.

https://doi.org/10.1016/j.sigpro.2009.11.018
https://doi.org/10.1016/j.sigpro.2009.11.018
https://doi.org/10.1016/j.sigpro.2009.11.018
https://doi.org/10.1016/j.sigpro.2009.11.018
https://doi.org/10.1016/j.sigpro.2009.11.018
https://doi.org/10.1016/j.sigpro.2009.11.018
https://doi.org/10.1016/j.sigpro.2009.11.018
https://doi.org/10.1016/j.sigpro.2009.11.018
https://doi.org/10.1016/j.sigpro.2009.11.018
https://doi.org/10.1016/j.sigpro.2009.11.018
https://doi.org/10.4324/9780429495373
https://doi.org/10.4324/9780429495373
https://doi.org/10.4324/9780429495373
https://doi.org/10.4324/9780429495373
https://doi.org/10.4324/9780429495373
https://doi.org/10.4324/9780429495373
https://doi.org/10.1093/oso/9780198250791.001.0001
https://doi.org/10.1093/oso/9780198250791.001.0001
https://doi.org/10.1093/oso/9780198250791.001.0001
https://doi.org/10.1093/oso/9780198250791.001.0001
https://doi.org/10.1093/oso/9780198250791.001.0001
https://doi.org/10.1093/oso/9780198250791.001.0001
https://doi.org/10.1093/oso/9780198250791.001.0001
https://doi.org/10.1093/oso/9780198250791.001.0001
https://doi.org/10.1093/oso/9780198250791.001.0001
https://doi.org/10.1177/0306312711424596
https://doi.org/10.1177/0306312711424596
https://doi.org/10.1177/0306312711424596
https://doi.org/10.1177/0306312711424596
https://doi.org/10.1177/0306312711424596
https://doi.org/10.1177/0306312711424596
https://doi.org/10.1109/85.476557
https://doi.org/10.1109/85.476557
https://doi.org/10.1109/85.476557
https://doi.org/10.1109/85.476557
https://doi.org/10.1109/85.476557
https://doi.org/10.1109/85.476557
https://doi.org/10.1109/85.476557
https://doi.org/10.1007/3-540-53669-8-77
https://doi.org/10.1007/3-540-53669-8-77
https://doi.org/10.1007/3-540-53669-8-77
https://doi.org/10.1007/3-540-53669-8-77
https://doi.org/10.1007/3-540-53669-8-77
https://doi.org/10.1007/3-540-53669-8-77
https://doi.org/10.1007/3-540-53669-8-77
https://doi.org/10.1007/3-540-53669-8-77
https://doi.org/10.1007/3-540-53669-8-77
https://doi.org/10.1007/3-540-53669-8-77
https://doi.org/10.1145/358886.358892
https://doi.org/10.1145/358886.358892
https://doi.org/10.1145/358886.358892
https://doi.org/10.1145/358886.358892
https://doi.org/10.1145/358886.358892
https://doi.org/10.1145/358886.358892
https://doi.org/10.1145/358886.358892
https://doi.org/10.1016/0304-3975(83)90129-9
https://doi.org/10.1016/0304-3975(83)90129-9
https://doi.org/10.1016/0304-3975(83)90129-9
https://doi.org/10.1016/0304-3975(83)90129-9
https://doi.org/10.1016/0304-3975(83)90129-9
https://doi.org/10.1016/0304-3975(83)90129-9
https://doi.org/10.1016/0304-3975(83)90129-9
https://doi.org/10.1016/0304-3975(83)90129-9
https://doi.org/10.1002/bate.201010046
https://doi.org/10.1002/bate.201010046
https://doi.org/10.1002/bate.201010046
https://doi.org/10.1002/bate.201010046
https://doi.org/10.1002/bate.201010046
https://doi.org/10.1002/bate.201010046
https://doi.org/10.1002/bate.201010046
https://berlingeschichte.de/bms/bmstxt00/0004prol.htm
https://berlingeschichte.de/bms/bmstxt00/0004prol.htm
https://berlingeschichte.de/bms/bmstxt00/0004prol.htm
https://berlingeschichte.de/bms/bmstxt00/0004prol.htm
https://berlingeschichte.de/bms/bmstxt00/0004prol.htm
https://berlingeschichte.de/bms/bmstxt00/0004prol.htm
https://berlingeschichte.de/bms/bmstxt00/0004prol.htm
https://doi.org/10.5555/1095587
https://doi.org/10.5555/1095587
https://doi.org/10.5555/1095587
https://doi.org/10.5555/1095587
https://doi.org/10.5555/1095587
https://doi.org/10.5555/1095587

References 227

Petzold, H. 1992. Moderne Rechenkünstler: die Industrialisierung der Rechentechnik in Deutsch-
land. Munich: C.H. Beck.

Petzold, H. 2004. Hardwaretechnologische Alternativen bei Konrad Zuse. In Geschichten der
Informatik: Visionen, Paradigmen, Leitmotive, ed. HD Hellige. Berlin, Heidelberg: Springer.
https://doi.org/0.1007/978-3-642-18631-8-5.

Poe, E.A. 1836. Maelzels chess player. Southern Literary Messenger 2: 318–326.
Randell, B. 1982a. From analytical engine to electronic digital computer: The contributions of

ludgate, torres and bush. Annals of the History of Computing 4(4). https://doi.org/10.1109/
MAHC.1982.10042.

Randell, B., ed. 1982b. The Origins of Digital Computers, 3rd edn. Monographs in Computer
Science. Berlin: Springer. https://doi.org/10.1007/978-3-642-61812-3.

Range, J. 2016. Validierung und Visualisierung des Mikrocodes der Z3 von Konrad Zuse. Master’s
Thesis, Humboldt Universität Berlin.

Rojas, R. 1993. Who Invented the Computer? The Debate from the Viewpoint of Computer
Architecture. In Fifty Years Mathematics of Computation, ed. W. Gautschi, Vol. 48, 361–
366. Proceedings of Symposia in Applied Mathematics. https://doi.org/10.1090/psapm/048/
1314871.

Rojas, R. 1994. On basic concepts of early computers in relation to contemporary computer
architectures. In IFIP 13th World Computer Congress, 324–331.

Rojas, R. 1996a. Conditional Branching is not Necessary for Universal Computation in von
Neumann Computers. Journal of Universal Computer Science 2(11): 756–767. https://doi.org/
10.3217/jucs-002-11-0756.

Rojas, R. 1996b. Die Architektur der Rechenmaschinen Z1 und Z3 von Konrad Zuse. Informatik-
Spektrum 19(6): 303–314. https://doi.org/10.1007/s002870050041.

Rojas, R. 1997. Konrad Zuse’s legacy: The architecture of the Z1 and Z3. IEEE Annals of the
History of Computing 19(2): 5–16. https://doi.org/10.1109/85.586067.

Rojas, R. 1998a. Die Rechenmaschinen von Konrad Zuse. Berlin: Springer. https://doi.org/10.
1007/978-3-642-71944-8.

Rojas, R. 1998b. How to make Konrad Zuse’s Z3 a universal computer. IEEE Annals of the History
of Computing 20(3): 51–54. https://doi.org/10.1109/85.707574.

Rojas, R. 2000. Simulating Konrad Zuse’s computers. Dr Dobbs Journal 316: 64–69.
Rojas, R. 2001. Konrad Zuse – War der Erfinder des computers doch kein Musterschüler?

Telepolis.de
Rojas, R. 2014a. Konrad Zuse und der bedingte Sprung. Informatik-Spektrum 37: 50–53. https://

doi.org/10.1007/s00287-013-0717-9.
Rojas, R. 2014b. The Z1: Architecture and Algorithms of Konrad Zuse’s First Computer. https://

arxiv.org/abs/1406.1886, arXiv eprint.
Rojas, R. 2016. The Design Principles of Konrad Zuse’s Mechanical Computers. https://arxiv.org/

abs/1603.02396, arXiv eprint.
Rojas, R. 2021a. The architecture of Konrad Zuse’s Z4 computer. In IEEE 7th IEEE History of

Electrotechnology Conference, Moscow, 43–47.
Rojas, R. 2021b. The computer programs of Charles Babbage. IEEE Annals of the History of

Computing 43(1): 6–18. https://doi.org/10.1109/MAHC.2020.3045717.
Rojas, R., and U. Hashagen. eds. 2001. The first computers: history and architectures. Cambridge,

MA: MIT Press.
Rojas, R., Göktekin, C., Friedland, G., Krüger, M., Langmack, O., and D. Kuniß. 2000. Plankalkül:

The First High-Level Programming Language and its Implementation. Technical Report B-
3/2000, Freie Universität Berlin.

Rojas, R., Darius, F., Göktekin, C., and G. Heyne. 2005. The reconstruction of Konrad Zuse’s Z3.
IEEE Annals of the History of Computing 27(3): 23–32. https://doi.org/10.1109/MAHC.2005.
48.

Rojas, R., Röder, J., and H. Nguyen. 2014. Die Prozessorarchitektur der Rechenmaschine Z1.
Informatik-Spektrum 37(4): 341–347. https://doi.org/10.1007/s00287-013-0749-1.

Schreyer, H. 1939. Technische Rechenmaschine. Zuse Papers 004/002 www.zib.de/zuse.

https://doi.org/0.1007/978-3-642-18631-8-5
https://doi.org/0.1007/978-3-642-18631-8-5
https://doi.org/0.1007/978-3-642-18631-8-5
https://doi.org/0.1007/978-3-642-18631-8-5
https://doi.org/0.1007/978-3-642-18631-8-5
https://doi.org/0.1007/978-3-642-18631-8-5
https://doi.org/0.1007/978-3-642-18631-8-5
https://doi.org/0.1007/978-3-642-18631-8-5
https://doi.org/0.1007/978-3-642-18631-8-5
https://doi.org/0.1007/978-3-642-18631-8-5
https://doi.org/0.1007/978-3-642-18631-8-5
https://doi.org/10.1109/MAHC.1982.10042
https://doi.org/10.1109/MAHC.1982.10042
https://doi.org/10.1109/MAHC.1982.10042
https://doi.org/10.1109/MAHC.1982.10042
https://doi.org/10.1109/MAHC.1982.10042
https://doi.org/10.1109/MAHC.1982.10042
https://doi.org/10.1109/MAHC.1982.10042
https://doi.org/10.1109/MAHC.1982.10042
https://doi.org/10.1007/978-3-642-61812-3
https://doi.org/10.1007/978-3-642-61812-3
https://doi.org/10.1007/978-3-642-61812-3
https://doi.org/10.1007/978-3-642-61812-3
https://doi.org/10.1007/978-3-642-61812-3
https://doi.org/10.1007/978-3-642-61812-3
https://doi.org/10.1007/978-3-642-61812-3
https://doi.org/10.1007/978-3-642-61812-3
https://doi.org/10.1007/978-3-642-61812-3
https://doi.org/10.1007/978-3-642-61812-3
https://doi.org/10.1090/psapm/048/1314871
https://doi.org/10.1090/psapm/048/1314871
https://doi.org/10.1090/psapm/048/1314871
https://doi.org/10.1090/psapm/048/1314871
https://doi.org/10.1090/psapm/048/1314871
https://doi.org/10.1090/psapm/048/1314871
https://doi.org/10.1090/psapm/048/1314871
https://doi.org/10.1090/psapm/048/1314871
https://doi.org/10.3217/jucs-002-11-0756
https://doi.org/10.3217/jucs-002-11-0756
https://doi.org/10.3217/jucs-002-11-0756
https://doi.org/10.3217/jucs-002-11-0756
https://doi.org/10.3217/jucs-002-11-0756
https://doi.org/10.3217/jucs-002-11-0756
https://doi.org/10.3217/jucs-002-11-0756
https://doi.org/10.3217/jucs-002-11-0756
https://doi.org/10.3217/jucs-002-11-0756
https://doi.org/10.1007/s002870050041
https://doi.org/10.1007/s002870050041
https://doi.org/10.1007/s002870050041
https://doi.org/10.1007/s002870050041
https://doi.org/10.1007/s002870050041
https://doi.org/10.1007/s002870050041
https://doi.org/10.1109/85.586067
https://doi.org/10.1109/85.586067
https://doi.org/10.1109/85.586067
https://doi.org/10.1109/85.586067
https://doi.org/10.1109/85.586067
https://doi.org/10.1109/85.586067
https://doi.org/10.1109/85.586067
https://doi.org/10.1007/978-3-642-71944-8
https://doi.org/10.1007/978-3-642-71944-8
https://doi.org/10.1007/978-3-642-71944-8
https://doi.org/10.1007/978-3-642-71944-8
https://doi.org/10.1007/978-3-642-71944-8
https://doi.org/10.1007/978-3-642-71944-8
https://doi.org/10.1007/978-3-642-71944-8
https://doi.org/10.1007/978-3-642-71944-8
https://doi.org/10.1007/978-3-642-71944-8
https://doi.org/10.1007/978-3-642-71944-8
https://doi.org/10.1109/85.707574
https://doi.org/10.1109/85.707574
https://doi.org/10.1109/85.707574
https://doi.org/10.1109/85.707574
https://doi.org/10.1109/85.707574
https://doi.org/10.1109/85.707574
https://doi.org/10.1109/85.707574
https://doi.org/10.1007/s00287-013-0717-9
https://doi.org/10.1007/s00287-013-0717-9
https://doi.org/10.1007/s00287-013-0717-9
https://doi.org/10.1007/s00287-013-0717-9
https://doi.org/10.1007/s00287-013-0717-9
https://doi.org/10.1007/s00287-013-0717-9
https://doi.org/10.1007/s00287-013-0717-9
https://doi.org/10.1007/s00287-013-0717-9
https://doi.org/10.1007/s00287-013-0717-9
https://arxiv.org/abs/1406.1886
https://arxiv.org/abs/1406.1886
https://arxiv.org/abs/1406.1886
https://arxiv.org/abs/1406.1886
https://arxiv.org/abs/1406.1886
https://arxiv.org/abs/1406.1886
https://arxiv.org/abs/1603.02396
https://arxiv.org/abs/1603.02396
https://arxiv.org/abs/1603.02396
https://arxiv.org/abs/1603.02396
https://arxiv.org/abs/1603.02396
https://arxiv.org/abs/1603.02396
https://doi.org/10.1109/MAHC.2020.3045717
https://doi.org/10.1109/MAHC.2020.3045717
https://doi.org/10.1109/MAHC.2020.3045717
https://doi.org/10.1109/MAHC.2020.3045717
https://doi.org/10.1109/MAHC.2020.3045717
https://doi.org/10.1109/MAHC.2020.3045717
https://doi.org/10.1109/MAHC.2020.3045717
https://doi.org/10.1109/MAHC.2020.3045717
https://doi.org/10.1109/MAHC.2005.48
https://doi.org/10.1109/MAHC.2005.48
https://doi.org/10.1109/MAHC.2005.48
https://doi.org/10.1109/MAHC.2005.48
https://doi.org/10.1109/MAHC.2005.48
https://doi.org/10.1109/MAHC.2005.48
https://doi.org/10.1109/MAHC.2005.48
https://doi.org/10.1109/MAHC.2005.48
https://doi.org/10.1007/s00287-013-0749-1
https://doi.org/10.1007/s00287-013-0749-1
https://doi.org/10.1007/s00287-013-0749-1
https://doi.org/10.1007/s00287-013-0749-1
https://doi.org/10.1007/s00287-013-0749-1
https://doi.org/10.1007/s00287-013-0749-1
https://doi.org/10.1007/s00287-013-0749-1
https://doi.org/10.1007/s00287-013-0749-1
https://doi.org/10.1007/s00287-013-0749-1
www.zib.de/zuse
www.zib.de/zuse
www.zib.de/zuse
www.zib.de/zuse

228 References

Schreyer, H. 1941. Das Röhrenrelays und seine Schaltungstechnik. PhD thesis, TH Berlin.
Schweier, U., and D. Saupe. 1988. Funktions- und Konstruktionsprinzipien der Program-

mgesteuerten Rechenmaschine “Z1”. Arbeitspapiere der Gesellschaft für Mathematik und
Datenverarbeitung 321.

Shannon, C.E. 1950. Programming a computer for playing chess. Philosophical Magazine 41:
256–275. https://doi.org/10.1007/978-1-4757-1968-0-1.

Speiser, A. 2000. Konrad Zuse’s Z4: Architecture, programming, and modifications at the ETH
Zurich. In The first computers - history and architectures, eds. R. Rojas, U. Hashagen
Cambridge, MA: MIT Press.

Stern, N. 1981. From ENIAC to UNIVAC. Bedford: Digital Press.
Teitelbaum, T., and T. Reps. 1981. The cornell program synthesizer: A syntax directed pro-

gramming environment. Communications of the ACM 24(9): 563–573. https://doi.org/10.1145/
358746.358755.

Tomayko, J.E. 1985. Helmut Hoelzer’s Fully Electronic Analog Computer. Annals of the History
of Computing 7 (3): 227–240. https://doi.org/10.1109/MAHC.1985.10025.

Turing, A. 1948. Document amt/k/1/77. Alan Turing Digital Archive.
Turing, A. 1953. Digital computers applied to games. In Faster Than Thought, ed. Bowden BV.

London: Sir Isaac Pitman & Sons Ltd.
von Neumann, J. 1945. First Draft of a Report on the EDVAC. Unpublished draft.
von Neumann, J., and O. Morgenstern. 1944. Theory of games and economic behavior. Princeton:

Princeton University Press.
Zermelo, E. 2010. Ernst Zermelo – collected works, 1st edn. Berlin, Heidelberg: Springer. https://

doi.org/10.1007/978-3-540-79384-7.
Zuse, H. 2000. Konrad Zuse—Seine Rechenmaschinen. In Konrad Zuse—Der Vater des Comput-

ers, ed. Alex Jürgen, Flessner Hermann, Mons Wilhelm, Pauli Kurt, and Zuse Horst. Fulda:
Verlag Parzeller.

Zuse, K. 1936a. Die Aufstellung der Rechenpläne. Deutsches Museum Digital. http://digital.
deutsches-museum.de/item/NL-207-0208/.

Zuse, K. 1936b. Die Rechenmaschine des Ingenieurs. Deutsches Museum Digital. http://digital.
deutsches-museum.de/item/NL-207-0209/.

Zuse, K. 1936c. Die Rechenmaschine des Ingenieurs. Mathematische Probleme. Deutsches
Museum Digital. http://digital.deutsches-museum.de/item/NL-207-0214/.

Zuse, K. 1936d. Patentanmeldung Z 23 139 IX / 42m: Verfahren zur selbsttätigen Durchführung
von Rechnungen mit Hilfe von Rechenmaschinen [für Zuse]. Deutsches Museum Digital.
http://digital.deutsches-museum.de/item/NL-207-0990/.

Zuse, K. 1937a. Einführung in die allgemeine Dyadik. Deutsches Museum Digital. http://digital.
deutsches-museum.de/item/NL-207-0210/.

Zuse, K. 1937b. Einführung in die allgemeine Dyadik. Deutsches Museum Digital. http://digital.
deutsches-museum.de/item/NL-207-0211/.

Zuse, K. 1938. Die Rechenmaschine des Ingenieurs. Available online at the Zuse Internet Archive.
Zuse, K. 1939/1940. Chiffriermaschine. Zuse Archive at Deutsches Museum, images 202_4-01,

202_4-02, 202_4-03.
Zuse, K. 1940. Draft of a letter to Kurt Pannke. Zuse Archive at Deutsches Museum.
Zuse, K. 1941. Patentanmeldung Z-391. Berlin: German Patent Office.
Zuse, K. 1941-1942. Stenografische Notizen zum Schachspiel. Deutsches Museum Digital. http://

digital.deutsches-museum.de/item/NL-207-0746/.
Zuse, K. 1942a Modell S1/S2. Skizze der Gesamtanlage und Rechenschema. Available online at

the Zuse Internet Archive.
Zuse, K. 1942b. Programmgesteuerte Rechenmaschine für Flügelvermessung. Available online at

the Zuse Internet Archive.
Zuse, K. 1942c. Vorarbeiten zum Plankalkül. Schachprogramme. Zuse Papers 012/012.
Zuse, K. 1943a. Rechenplangesteuerte Rechengeräte für technische und wissenschaftliche Rech-

nungen. Deutsches Museum Digital. http://digital.deutsches-museum.de/item/NL-207-0217/.

https://doi.org/10.1007/978-1-4757-1968-0-1
https://doi.org/10.1007/978-1-4757-1968-0-1
https://doi.org/10.1007/978-1-4757-1968-0-1
https://doi.org/10.1007/978-1-4757-1968-0-1
https://doi.org/10.1007/978-1-4757-1968-0-1
https://doi.org/10.1007/978-1-4757-1968-0-1
https://doi.org/10.1007/978-1-4757-1968-0-1
https://doi.org/10.1007/978-1-4757-1968-0-1
https://doi.org/10.1007/978-1-4757-1968-0-1
https://doi.org/10.1007/978-1-4757-1968-0-1
https://doi.org/10.1007/978-1-4757-1968-0-1
https://doi.org/10.1145/358746.358755
https://doi.org/10.1145/358746.358755
https://doi.org/10.1145/358746.358755
https://doi.org/10.1145/358746.358755
https://doi.org/10.1145/358746.358755
https://doi.org/10.1145/358746.358755
https://doi.org/10.1145/358746.358755
https://doi.org/10.1109/MAHC.1985.10025
https://doi.org/10.1109/MAHC.1985.10025
https://doi.org/10.1109/MAHC.1985.10025
https://doi.org/10.1109/MAHC.1985.10025
https://doi.org/10.1109/MAHC.1985.10025
https://doi.org/10.1109/MAHC.1985.10025
https://doi.org/10.1109/MAHC.1985.10025
https://doi.org/10.1109/MAHC.1985.10025
https://doi.org/10.1007/978-3-540-79384-7
https://doi.org/10.1007/978-3-540-79384-7
https://doi.org/10.1007/978-3-540-79384-7
https://doi.org/10.1007/978-3-540-79384-7
https://doi.org/10.1007/978-3-540-79384-7
https://doi.org/10.1007/978-3-540-79384-7
https://doi.org/10.1007/978-3-540-79384-7
https://doi.org/10.1007/978-3-540-79384-7
https://doi.org/10.1007/978-3-540-79384-7
https://doi.org/10.1007/978-3-540-79384-7
http://digital.deutsches-museum.de/item/NL-207-0208/
http://digital.deutsches-museum.de/item/NL-207-0208/
http://digital.deutsches-museum.de/item/NL-207-0208/
http://digital.deutsches-museum.de/item/NL-207-0208/
http://digital.deutsches-museum.de/item/NL-207-0208/
http://digital.deutsches-museum.de/item/NL-207-0208/
http://digital.deutsches-museum.de/item/NL-207-0208/
http://digital.deutsches-museum.de/item/NL-207-0208/
http://digital.deutsches-museum.de/item/NL-207-0208/
http://digital.deutsches-museum.de/item/NL-207-0209/
http://digital.deutsches-museum.de/item/NL-207-0209/
http://digital.deutsches-museum.de/item/NL-207-0209/
http://digital.deutsches-museum.de/item/NL-207-0209/
http://digital.deutsches-museum.de/item/NL-207-0209/
http://digital.deutsches-museum.de/item/NL-207-0209/
http://digital.deutsches-museum.de/item/NL-207-0209/
http://digital.deutsches-museum.de/item/NL-207-0209/
http://digital.deutsches-museum.de/item/NL-207-0209/
http://digital.deutsches-museum.de/item/NL-207-0214/
http://digital.deutsches-museum.de/item/NL-207-0214/
http://digital.deutsches-museum.de/item/NL-207-0214/
http://digital.deutsches-museum.de/item/NL-207-0214/
http://digital.deutsches-museum.de/item/NL-207-0214/
http://digital.deutsches-museum.de/item/NL-207-0214/
http://digital.deutsches-museum.de/item/NL-207-0214/
http://digital.deutsches-museum.de/item/NL-207-0214/
http://digital.deutsches-museum.de/item/NL-207-0214/
http://digital.deutsches-museum.de/item/NL-207-0990/
http://digital.deutsches-museum.de/item/NL-207-0990/
http://digital.deutsches-museum.de/item/NL-207-0990/
http://digital.deutsches-museum.de/item/NL-207-0990/
http://digital.deutsches-museum.de/item/NL-207-0990/
http://digital.deutsches-museum.de/item/NL-207-0990/
http://digital.deutsches-museum.de/item/NL-207-0990/
http://digital.deutsches-museum.de/item/NL-207-0990/
http://digital.deutsches-museum.de/item/NL-207-0990/
http://digital.deutsches-museum.de/item/NL-207-0210/
http://digital.deutsches-museum.de/item/NL-207-0210/
http://digital.deutsches-museum.de/item/NL-207-0210/
http://digital.deutsches-museum.de/item/NL-207-0210/
http://digital.deutsches-museum.de/item/NL-207-0210/
http://digital.deutsches-museum.de/item/NL-207-0210/
http://digital.deutsches-museum.de/item/NL-207-0210/
http://digital.deutsches-museum.de/item/NL-207-0210/
http://digital.deutsches-museum.de/item/NL-207-0210/
http://digital.deutsches-museum.de/item/NL-207-0211/
http://digital.deutsches-museum.de/item/NL-207-0211/
http://digital.deutsches-museum.de/item/NL-207-0211/
http://digital.deutsches-museum.de/item/NL-207-0211/
http://digital.deutsches-museum.de/item/NL-207-0211/
http://digital.deutsches-museum.de/item/NL-207-0211/
http://digital.deutsches-museum.de/item/NL-207-0211/
http://digital.deutsches-museum.de/item/NL-207-0211/
http://digital.deutsches-museum.de/item/NL-207-0211/
http://digital.deutsches-museum.de/item/NL-207-0746/
http://digital.deutsches-museum.de/item/NL-207-0746/
http://digital.deutsches-museum.de/item/NL-207-0746/
http://digital.deutsches-museum.de/item/NL-207-0746/
http://digital.deutsches-museum.de/item/NL-207-0746/
http://digital.deutsches-museum.de/item/NL-207-0746/
http://digital.deutsches-museum.de/item/NL-207-0746/
http://digital.deutsches-museum.de/item/NL-207-0746/
http://digital.deutsches-museum.de/item/NL-207-0746/
http://digital.deutsches-museum.de/item/NL-207-0217/
http://digital.deutsches-museum.de/item/NL-207-0217/
http://digital.deutsches-museum.de/item/NL-207-0217/
http://digital.deutsches-museum.de/item/NL-207-0217/
http://digital.deutsches-museum.de/item/NL-207-0217/
http://digital.deutsches-museum.de/item/NL-207-0217/
http://digital.deutsches-museum.de/item/NL-207-0217/
http://digital.deutsches-museum.de/item/NL-207-0217/
http://digital.deutsches-museum.de/item/NL-207-0217/

References 229

Zuse, K. 1943b. Rechenplangesteuerte Rechengeräte für technische und wissenschaftliche Rech-
nungen. Deutsches Museum Digital. http://digital.deutsches-museum.de/item/NL-207-0217/.

Zuse, K. 1944a Gerät S2a Rechengerät für Flügelvermessung mit automatischer Ablesbarkeit
der Messuhren. 2. Ausführung des Spezialmodells S2. Available online at the Zuse Internet
Archive.

Zuse, K. 1944b. Mechanische Schaltgliedtechnik. Deutsches Museum Digital. http://digital.
deutsches-museum.de/item/NL-207-0226/.

Zuse, K. 1944c. Notizen zu den Schaltungen. Available online at the Zuse Internet Archive.
Zuse, K. 1944d. Patentanmeldung Z-394: Rechenvorrichtung. Available online at the Zuse Internet

Archive.
Zuse, K. 1944e. Planfertigungsgeräte. Deutsches Museum Digital. http://digital.deutsches-

museum.de/item/NL-207-0220/.
Zuse, K. 1945. Theorie der Angewandten Logistik, 2. Buch. Deutsches Museum Digital. http://

digital.deutsches-museum.de/item/NL-207-0233/.
Zuse, K. 1946a. Kurze Beschreibung des mechanischen Speicherwerks der Firma Zuse. Deutsches

Museum Digital. http://digital.deutsches-museum.de/item/NL-207-0249/.
Zuse, K. 1946b. Zur Entwicklung von Rechengeräten bis zum Jahre 1945. Nennung von Namen

und finanziellen Unterstützungen. Available online at the Zuse Internet Archive.
Zuse, K. 1946c. Zuse Calculators. Available online at the Zuse Internet Archive.
Zuse, K. 1948. Über den Plankalkül als Mittel zur Formulierung schematisch kombinativer

Aufgaben. Archiv der Mathematik 1(6): 441–449.
Zuse, K. 1950. Patentschrift Nr.926449, Kombinierte numerische und nichtnumerische Rechen-

maschine. Deutsches Patentamt, 11 Seiten.
Zuse, K. 1952a. Bedienungsanweisung für Zuse Z4. Zurich: ETH Zurich. https://doi.org/10.7891/

e-manuscripta-98601.
Zuse, K. 1952b. Rechenvorrichtungen aus mechanischen Schaltgliedern. Deutsches Museum

Digital. http://zuse.zib.de/.
Zuse, K. 1952c. Rechenvorrichtungen aus mechanischen Schaltgliedern. Deutsches Museum

Digital. http://digital.deutsches-museum.de/item/NL-207-0961/.
Zuse, K. 1952d. Theorie der mechanischen Schaltglieder. Available online at the Zuse Internet

Archive.
Zuse, K. 1953a Patentschrift nr. 872645: Verfahren zur Abtastung von Oberflächen und Einrich-

tung zur Durchführung des Verfahrens (für Zuse). Deutsches Museum Digital. http://digital.
deutsches-museum.de/item/NL-207-0998/.

Zuse, K. 1953b Verfahren zur Abtastung von Oberflächen und Einrichtung zur Durchführung des
Verfahrens. German Patent Office, Patent 872645.

Zuse, K. 1954. Patentschrift nr. 907948: Mechanisches Schaltglied (für die Zuse KG). Deutsches
Museum Digital. http://digital.deutsches-museum.de/item/NL-207-0999/.

Zuse, K. 1955. Patentschrift nr. 924107: Aus mechanischen Schaltgliedern aufgebautes Speicherw-
erk (für Zuse). Deutsches Museum Digital. http://digital.deutsches-museum.de/item/NL-207-
1001/.

Zuse, K. 1970. Der computer – Mein Lebenswerk. Landsberg: Verlag Moderne Industrie.
Zuse, K. 1972. Der Plankalkül (vol. 63). Sankt Augustin: Berichte der Gesellschaft für Mathematik

und Datenverarbeitung.
Zuse, K. ca 1945. Rechenpläne für das Rechengerät V4. Available online at the Zuse Internet

Archive.

http://digital.deutsches-museum.de/item/NL-207-0217/
http://digital.deutsches-museum.de/item/NL-207-0217/
http://digital.deutsches-museum.de/item/NL-207-0217/
http://digital.deutsches-museum.de/item/NL-207-0217/
http://digital.deutsches-museum.de/item/NL-207-0217/
http://digital.deutsches-museum.de/item/NL-207-0217/
http://digital.deutsches-museum.de/item/NL-207-0217/
http://digital.deutsches-museum.de/item/NL-207-0217/
http://digital.deutsches-museum.de/item/NL-207-0217/
http://digital.deutsches-museum.de/item/NL-207-0226/
http://digital.deutsches-museum.de/item/NL-207-0226/
http://digital.deutsches-museum.de/item/NL-207-0226/
http://digital.deutsches-museum.de/item/NL-207-0226/
http://digital.deutsches-museum.de/item/NL-207-0226/
http://digital.deutsches-museum.de/item/NL-207-0226/
http://digital.deutsches-museum.de/item/NL-207-0226/
http://digital.deutsches-museum.de/item/NL-207-0226/
http://digital.deutsches-museum.de/item/NL-207-0226/
http://digital.deutsches-museum.de/item/NL-207-0220/
http://digital.deutsches-museum.de/item/NL-207-0220/
http://digital.deutsches-museum.de/item/NL-207-0220/
http://digital.deutsches-museum.de/item/NL-207-0220/
http://digital.deutsches-museum.de/item/NL-207-0220/
http://digital.deutsches-museum.de/item/NL-207-0220/
http://digital.deutsches-museum.de/item/NL-207-0220/
http://digital.deutsches-museum.de/item/NL-207-0220/
http://digital.deutsches-museum.de/item/NL-207-0220/
http://digital.deutsches-museum.de/item/NL-207-0233/
http://digital.deutsches-museum.de/item/NL-207-0233/
http://digital.deutsches-museum.de/item/NL-207-0233/
http://digital.deutsches-museum.de/item/NL-207-0233/
http://digital.deutsches-museum.de/item/NL-207-0233/
http://digital.deutsches-museum.de/item/NL-207-0233/
http://digital.deutsches-museum.de/item/NL-207-0233/
http://digital.deutsches-museum.de/item/NL-207-0233/
http://digital.deutsches-museum.de/item/NL-207-0233/
http://digital.deutsches-museum.de/item/NL-207-0249/
http://digital.deutsches-museum.de/item/NL-207-0249/
http://digital.deutsches-museum.de/item/NL-207-0249/
http://digital.deutsches-museum.de/item/NL-207-0249/
http://digital.deutsches-museum.de/item/NL-207-0249/
http://digital.deutsches-museum.de/item/NL-207-0249/
http://digital.deutsches-museum.de/item/NL-207-0249/
http://digital.deutsches-museum.de/item/NL-207-0249/
http://digital.deutsches-museum.de/item/NL-207-0249/
https://doi.org/10.7891/e-manuscripta-98601
https://doi.org/10.7891/e-manuscripta-98601
https://doi.org/10.7891/e-manuscripta-98601
https://doi.org/10.7891/e-manuscripta-98601
https://doi.org/10.7891/e-manuscripta-98601
https://doi.org/10.7891/e-manuscripta-98601
https://doi.org/10.7891/e-manuscripta-98601
https://doi.org/10.7891/e-manuscripta-98601
http://zuse.zib.de/
http://zuse.zib.de/
http://zuse.zib.de/
http://zuse.zib.de/
http://digital.deutsches-museum.de/item/NL-207-0961/
http://digital.deutsches-museum.de/item/NL-207-0961/
http://digital.deutsches-museum.de/item/NL-207-0961/
http://digital.deutsches-museum.de/item/NL-207-0961/
http://digital.deutsches-museum.de/item/NL-207-0961/
http://digital.deutsches-museum.de/item/NL-207-0961/
http://digital.deutsches-museum.de/item/NL-207-0961/
http://digital.deutsches-museum.de/item/NL-207-0961/
http://digital.deutsches-museum.de/item/NL-207-0961/
http://digital.deutsches-museum.de/item/NL-207-0998/
http://digital.deutsches-museum.de/item/NL-207-0998/
http://digital.deutsches-museum.de/item/NL-207-0998/
http://digital.deutsches-museum.de/item/NL-207-0998/
http://digital.deutsches-museum.de/item/NL-207-0998/
http://digital.deutsches-museum.de/item/NL-207-0998/
http://digital.deutsches-museum.de/item/NL-207-0998/
http://digital.deutsches-museum.de/item/NL-207-0998/
http://digital.deutsches-museum.de/item/NL-207-0998/
http://digital.deutsches-museum.de/item/NL-207-0999/
http://digital.deutsches-museum.de/item/NL-207-0999/
http://digital.deutsches-museum.de/item/NL-207-0999/
http://digital.deutsches-museum.de/item/NL-207-0999/
http://digital.deutsches-museum.de/item/NL-207-0999/
http://digital.deutsches-museum.de/item/NL-207-0999/
http://digital.deutsches-museum.de/item/NL-207-0999/
http://digital.deutsches-museum.de/item/NL-207-0999/
http://digital.deutsches-museum.de/item/NL-207-0999/
http://digital.deutsches-museum.de/item/NL-207-1001/
http://digital.deutsches-museum.de/item/NL-207-1001/
http://digital.deutsches-museum.de/item/NL-207-1001/
http://digital.deutsches-museum.de/item/NL-207-1001/
http://digital.deutsches-museum.de/item/NL-207-1001/
http://digital.deutsches-museum.de/item/NL-207-1001/
http://digital.deutsches-museum.de/item/NL-207-1001/
http://digital.deutsches-museum.de/item/NL-207-1001/
http://digital.deutsches-museum.de/item/NL-207-1001/

	Foreword
	Preface
	References

	Acknowledgements
	Contents
	1 Konrad Zuse and the Dawn of the Computer Age
	1.1 Birth and Education
	1.2 First Ideas: The Spreadsheet Computer
	1.3 The Z1 and Z3 Machines
	1.4 Construction and Capabilities of the Z1, Z3, and Z4
	1.5 The Aftermath of the War and Plankalkül
	1.6 Rebirth of Zuse's Company
	1.7 Epilogue
	References

	2 The Race to Build the Computer in World War II
	2.1 Berlin Between the Wars
	2.1.1 Science and Art in Berlin
	2.1.2 The Years of Computability

	2.2 Computers in Wold War II
	2.2.1 John Atanasoff's ABC
	2.2.2 The Harvard Mark I
	2.2.3 The ENIAC
	2.2.4 Wunderwaffen and the Z4
	2.2.5 The First Computers

	2.3 Helmut Schreyer and the Electronic Computer
	2.3.1 The Closest Friend
	2.3.2 The Electronic Computer

	2.4 Conclusion
	References

	3 The Z1: Architecture and Algorithms of Zuse's First Computer
	3.1 Konrad Zuse and the Z1
	3.2 Block Architecture
	3.3 Layout of the Mechanical Components
	3.4 The Mechanical Gates
	3.4.1 The Mechanical Clock Cycle
	3.4.2 Transmission of Impulses
	3.4.3 An Example: The Mechanical Addition Unit
	3.4.4 Preliminary Summary of the Mechanical Principles

	3.5 The Memory of the Z1
	3.6 The Addition Unit of the Z1
	3.7 The Sequencer of the Z1
	3.8 The Processor's Datapath
	3.9 Conclusions
	Appendix: The Arithmetic Instructions
	Addition/Subtraction
	The Problem of Zero
	Multiplication
	Division
	Input and Output

	References

	4 The Z2 and the Cipher Machine
	4.1 Architecture of the Z2
	4.2 Konrad Zuse's Proposal for a Cipher Machine
	4.2.1 The Context of the Invention
	4.2.2 Konrad Zuse's Letter
	4.2.3 Discussion

	References

	5 The Architecture of the Z3
	5.1 Early Computing Machines
	5.2 Architectural Overview of the Z3
	5.2.1 Block Structure
	5.2.2 Floating-Point Representation
	5.2.3 Instruction Set
	5.2.4 Number of Cycles
	5.2.5 Programming Model

	5.3 Block Diagram of the Z3
	5.3.1 The Processor
	5.3.2 The Control Unit
	5.3.3 Microcontrol of the Z3
	5.3.4 The Adders

	5.4 Numerical Algorithms
	5.4.1 Floating-Point Exceptions
	5.4.2 Addition and Subtraction
	5.4.3 Multiplication
	5.4.4 Division
	5.4.5 Square Root Extraction
	5.4.6 Read and Display Instructions

	5.5 Complete Architecture of the Z3
	References

	6 How to Make Zuse's Z3 a Universal Computer
	6.1 Universal Machines and Single Loops
	6.2 Simulating Branches
	6.3 Halting the Computation
	6.4 Conclusions
	References

	7 The S1 and S2: Zuse's Work for the German Military 1941–1945
	7.1 Introduction
	7.2 The HS-293 Flying Bomb
	7.3 Block Architecture of the S1
	7.4 Operation of the S1
	7.5 The S2 and Automatic Process Control
	7.6 Discussion
	References

	8 The Architecture of the Z4
	8.1 Introduction
	8.2 Block Architecture
	8.3 Architectural Details
	8.4 The Arithmetic Instruction Set
	8.5 Conditionals and Control Transfer
	8.6 Conclusions
	References

	9 The Conditional Jump: Making the Z4 Universal
	9.1 Coding for the Z4
	9.2 The Punched Tape of the Z4
	9.3 Conditional Commands
	9.4 The Conditional Jump
	9.5 The Competitors
	References

	10 Plankalkül
	10.1 Introduction
	10.2 Origins of the Plankalkül
	10.3 Symbolic Computation
	10.4 The Syntax of the Plankalkül
	10.4.1 Variables and Data Types
	10.4.2 Arithmetic and Logic Statements
	10.4.3 Guarded Commands
	10.4.4 Iterations
	10.4.5 Examples of the Implicit Form of Plankalkül
	10.4.6 Linearized Form of the Plankalkül
	10.4.7 Functions and Function Calls
	10.4.8 Input and Output

	10.5 Implementation Issues
	10.5.1 The Editor
	10.5.2 The Parser
	10.5.3 The Runtime System

	10.6 Sample Programs
	10.7 Conclusions
	Appendix: Syntax of the Implementation of Plankalkül 2000
	Symbols
	Data Types
	Variables
	Function Call
	Arithmetic Operations
	Logic Operations
	Assignment
	IF-THEN
	WHILE
	Statements
	Programs
	Randauszug

	References

	11 Zuse's Computer for Binary Logic
	11.1 Introduction
	11.2 General Structure of the Logic Machine
	11.3 Encoding of the Instruction Set
	11.4 The Control and Decoding Unit
	11.5 The Memory Unit
	11.6 The Processor
	11.7 Was the Machine Arithmetically Complete?
	11.8 Discussion
	References

	12 The First Code for Computer Chess
	12.1 Computer Chess
	12.2 Prehistory of Computer Chess
	12.3 Enter Turing
	12.4 Zuse's Chess-Playing Program
	12.5 Move Generation in Zuse's Notebooks
	12.6 Computer Chess After Zuse, Turing, and Shannon
	References

	13 The Reconstruction of Konrad Zuse's Z3
	13.1 Introduction
	13.2 Architecture of the Z3
	13.3 The Konrad Zuse Internet Archive
	13.4 Reconstruction of the Addition Unit
	13.5 Full Reconstruction of the Z3
	13.6 The Virtual Z3
	13.7 Conclusions
	References

	14 Epilogue
	14.1 A Hierarchy of Architectural Levels
	14.2 Celebrating the Z1 in 2038?
	14.3 Acknowledgments for Figures
	References

	References

