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Preface

Organizing this book on Fractional Dynamics, Anomalous Transport and Plasma
Science—Lectures from CHAOS2017, we have to face the fascinating theory and
applications of plasma science. The development of the related theory was followed
by numerous applications, whereas the new findings brought new questions and
new scientific areas of research and model building. It was evident that the classical
model building based on derivatives had to be improved by using a “fraction” of
some of these derivatives. Though the expansion of a function in a Taylor series
theoretically could include as many as higher-order derivatives as possible to
account for the details of the system, the usual methodology includes the first- and
second-order derivatives in the majority of cases. The introduction of stochastic
differentials and stochastic calculus added extra terms to compensate for the
stochastic character of the real-life situations. Following the original works after
1900 and the first interesting achievements in stochastic model building the precise
data collection give rise to findings needing a model reorganization and improve-
ment. Anomalous transport was the case of many findings where the theory should
be improved. This was also supported by the development of chaos and nonlinear
science. The need for an advanced model building brought into light an almost
forgotten mathematical theory related to fractional calculus. Fractional dynamics
are extensively developed in the last 30 years with numerous publications along
with advancements of fractional calculus.

However, more work should be done. A part of the expected improvements has
to do with the advancements in fields like the turbulent theory, the statistics far from
equilibrium and perhaps the expected advancements with the plasma research in
cosmology. Even more the fractional dynamics methodology should be expanded to
include not only the fractional derivatives theory as it is already developed but also
new achievements. The papers selected for this book further from including the
plasma history and fractional dynamics and anomalous transport in micro- and
macroscale provide material for a better understanding of the underlying theory and
practice.
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Referring to the definitions of plasma in nowadays, the main part considers
plasma as the fourth state of matter of an ionized form under “hot” or “cold”
temperature conditions. Hot refers to temperatures like those inside the sun, a
classical plasma formation, whereas cold plasma refers to low temperature of heavy
species (ions and neutrals) and of high-temperature electrons. The latter case can
lead to a plasma application in room temperature as is the fluorescent lamp and
other plasma applications.

With fractional dynamics, we consider dynamical systems governed by
fractional-differential equations containing derivatives of non-integer order. Fractal
properties are also considered. Anomalous transport mainly refers to turbulence,
complex particle orbits, fluctuations, transport barriers, locality, super-diffusion and
sub-diffusion. The study could be accomplished by solving a kinetic equation or a
stochastic Fokker–Planck equation in a classical or in a fractional form.

The Origins of Plasma Science in connection to electricity and electric charges
and devices leading to arc plasma are explored in the first chapter of the book from
Jean-Marc Ginoux and Thomas Cuff. The historical review starts from around 585
BC when Thales of Miletus observed discharges due to frictional charge
up. Discharges by frictional electricity were rediscovered and greatly expanded in
the seventeenth and eighteenth century by many scientists. It follows the capacitor
invention or the “Leyden experiment”. The problem to increase the size of the
battery to reduce their internal resistance so that to move from a simple spark to an
arc and a continuous arc “PLASMA” achieved by Vasily Petrov, 1803, and then
by Sir Humphry Davy, 1808. Thus, the first electric street lighting employing
carbon arc lamps, also called “electric candle”, was developed in 1875. In 1863,
James Clerk Maxwell, by mathematical reasoning, formulated the theory that light
and radiant heat were electromagnetic phenomena, caused by strains set up in the
all-pervading medium, similar to the electric lines and magnetic lines theory proved
by Heinrich Hertz, 1887.

The second important connection with plasma was magnetism and the most
widely used system called as Magnetron. Victor J. Law and Denis P. Dowling in
the second chapter review the magnetron electronic valve family development
including a large variety of devices. They explain why and how the magnetron has
its origins in the conflict around the patents of thermionic diode valve in the early
1900 when to prevent potential litigation problems, Governments and industrial
companies around the world began research programs to replace the convoluted
problem of grid electrode with a magnetic field to control current flow with the aim
to produce space-charge oscillations travelling through the flux density of the
magnetic field.

Christos H. Skiadas and Charilaos Skiadas presented and applied the diffusion
theory as was developed based on a relatively difficult and laborious methodology.
However, the advances in mathematics and the use of computers in applications
gave rise to interesting applications in various scientific fields. The main lines of the
theory include a stochastic model and stochastic paths. The main task is to find the
mean value and the variance r. Then, the Fokker–Planck Equation should be solved
with appropriate boundary conditions to find the transition probability density and
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then the first exit time or hitting time probability density. The classical Fokker–
Planck (FP) equation has the form:

@pðht; tÞ
@t

¼ �ht
@pðht; tÞ

@ht
þ r2t

2
@2pðht; tÞ

@h2t

Two main fractional forms arise: The fractional FFP by replacing the second-
order differential with the fractional one expressed by a fractional parameter a,
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and a fractional FFP by replacing the time derivative with the fractional one
expressed by c.
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In both cases of the FFP equations, the solution methodology differs. The FFP
may differ considerably when applying in various cases or various scientific fields,
but the solution methodologies are similar usually leading to various forms
including in the majority the gamma function. However, we have presented an
example where the fractional theory could apply after solving a classical Fokker–
Planck equation and afterwards to select a fraction of the derivatives. The case
refers to a first exit time or hitting time probability density function related to a
fraction of first- and second-order derivatives, the latter contributing with a fraction
k to the stochastic process.

Anomalous diffusion by the fractional Fokker–Planck equation and Lévy stable
processes are studied by Johan Anderson and Sara Moradi. They consider the motion
of charged particles in a three-dimensional magnetic field in a cylindrical domain in
the presence of linear friction modelling collisional Coulomb drag and a stochastic
electric field according to the Langevin equations. This work is a review of current
developments in modelling anomalous diffusion using a Fokker–Planck description
with fractional velocity derivatives and Langevin dynamics where Lévy fluctuations
are introduced to model the effect of nonlocal transport due to fractional diffusion
in velocity space. Distribution functions are found using numerical means for varying
degree of fractionality of the stable Lévy distribution as solutions to the Fokker–Planck
equation and are compared to results from Langevin simulations. The statistical
properties of the distribution functions are assessed by a generalized normalized
expectation measure and entropy in terms of Tsallis statistical mechanics.

Analysis of low-frequency instabilities in low-temperature magnetized plasma is
presented by Dan-Gheorghe Dimitriu, Maricel Agop. The authors refer to experi-
mental results in the Q-machine at the University of Innsbruck in Austria while they
provide analytical formulation of the related theory. The theoretical calculations
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follow fractal curves. They assume that the Q-machine magnetized plasma particles
are moving on continuous and non-differentiable curves (fractal curves).
A theoretical model was developed in the frame of the scale relativity theory. The
model is able to explain some characteristics of the potential relaxation instability
and the electrostatic ion-cyclotron instability, as well as the interaction between
these two instabilities which leads to the amplitude and frequency modulation of the
second instability by the first one. Experimental results are shown, which are in
agreement with the theoretical model predictions.

Stefan Irimiciuc, Dan-Gheorghe Dimitriu, Maricel Agop propose a theoretical
model attempting to explain the dynamics of charged particles in a plasma dis-
charge where there is a strong flux of electrons from one plasma structure to
another. Basically, the dynamics of the electrons are described using a forced
damped oscillating system, with the aim to investigate the response of the global
discharge current to different changes in resolution scale, oscillation frequency and
damping coefficient. Based on a non-differential approach, an explanation was
proposed for the modulated oscillation of plasma structure created in a spherical
cathode with an orifice. Within the framework of the model, the particles move on
fractal curves which might lead to an oscillating state of the charged particles. The
system evolves from a double-period state towards a chaotic signal but never
reaching it. The evolution of the system is “controlled” by the damping of the
system and by the maximum frequency reached during a particular simulated
time-series.

The theory and applications of fractional derivatives in many-particle disordered
large systems are explored and applied by Z. Z. Alisultanov, A. M. Agalarov,
A. A. Potapov, G. B. Ragimkhanov. In this chapter, they consider several
possibilities for introducing fractional derivatives with respect to time and spatial
coordinate into the equations of a many-particle system. They introduce a fractional
time derivative in the quantum-mechanical Heisenberg equation, as well as eluci-
dating the physical conditions for the appearance of fractional derivatives with
respect to the spatial coordinate in the equation for the quantum Green’s functions.
For the latter, the Hartree–Fock approximation is used to calculate the interparticle
interaction potential. Finally, the fractional derivative approach was applied for
specific tasks in plasma science. Using an approach based on a fractional-order
kinetic equation on the time variable, they investigated two types of instability in a
gas discharge: the instability of the electron avalanche and the sticking instability in
a non-self-sustaining discharge.

They further emphasize:
The appearance of fractional operators in the equation for the Green’s function

is related with the non-ideality of the system. The consideration was carried in the
general form. It can be applied to both fermionic and bosonic systems. The most
interesting is the application of a fractional-differential approach to a phonon gas.
As is known, the non-ideality of the phonon gas, which is related to the complexity
of the crystal structure, leads to anharmonicity, with which many interesting effects
are related. The theory of anharmonicity of a fractional character has some
peculiarities and can be of great interest in describing real experimental results.
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For example, the elementary calculation shows that the fractional-differential
approach gives a wide class of temperature dependence of heat capacity. At the
same time, it is known that the temperature dependence of the specific heat for
complex crystals is not a single-valued function, but is determined by the type of
crystal and the structure. The latter circumstance is practically not described by the
existing theory. Thus, the fractional-differential approach in the theory of anhar-
monic effects in crystals is of great interest.

And conclude that:
Note that most physical models (classical and quantum) with fractional

derivatives are currently at the stage of intensive development. Problems arise even
at the stage of choosing one or another fractional operator. In general, preference
is given to those models that most adequately describe the available experimental
data. The specificity associated with fractional derivatives can manifest itself in the
stochastic dynamics and kinetics of large systems. It is logical to assume that
simultaneous introduction of fractional derivatives with respect to time and coor-
dinate in the classical and quantum cases is required. However, these issues
require further development!

Maricel Agop, Alina Gavrilut and Gabriel Crumpei consider and explore
motions of the physical systems that take place on continuous but non-differentiable
curves (fractal curves). Since the non-differentiability becomes a fundamental
property of the motions’ space, a correspondence between the interaction processes
and multifractality of the motion trajectories can be established. Then, for all scale
resolutions, the geodesics equations (in the form of the Schrödinger equation of
fractal type) and some applications (similarities between dynamics at atomic and
cosmic scales) are obtained.

Finally in the last chapter, S. L. Cherkas and V. L. Kalashnikov consider the
perturbations of plasma consisting of photons, baryons and electrons in a linearly
expanding (Milne-like) universe with taking into account the metric tensor and
vacuum perturbations. Here, they use the oversimplified model of plasma as a pure
radiation. They expose the scenarios of primordial baryon–photon plasma evolution
within the framework of the Milne-like universe models. Such models find a second
wind and promise an inflation-free solution of a lot of cosmological puzzles
including the cosmological constant one.

I would like to thank the authors and contributors of this volume, Christian
Caron from Springer and the other staff of Springer for a continuing collaboration
started several years ago leading to important publications.

Athens, Greece Christos H. Skiadas
October 2018
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From Branly Coherer to ChuaMemristor

Jean-Marc Ginoux and Thomas Cuff

1 The Origin of Arc Plasma Science

According to Anders [1] “Since there have been two distinct developments of elec-
trical energy sources – the capacitor and the electrochemical battery – the distinc-
tion between pulsed and oscillating and continuous arc discharges appeared quite
natural.”

1.1 Pulsed and Oscillating Arc Discharges

Around 585BC,Thales ofMiletus discovered that if he rubbed amber (called elektron
inAncientGreek)with a piece of fur, that amber could attract lightweight objects (like
feathers) to itself. He was thus one of the first to observe discharges due to frictional
chargeup. Subsequently, discharges by frictional electricity were rediscovered and
greatly expanded in the 17th and 18th century by many scientists such the famous
Otto von Guericke (1602–1686), Francis Hawsksbee (1666–1713) and Samuel Wall
to name but a few. Von Guericke is credited with inventing before 1663 a primitive
form of frictional electrical machine consisting of a sulphur globe attached to an iron
rod that he called “Elektrisiermaschine”. By rubbing a sulfur globe with a dry hand,
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2 J.-M. Ginoux and T. Cuff

his charged globe was then able to attract and repel after contact other light objects
such as feathers, drops of water and also to generate sparks. A few years after, the
French astronomer, Jean Picard (1620–1682) made an amazing discovery:

Towards the year 1676,MonsieurPicardwas transportinghis barometer from theObservatory
to Port Saint Michel during the night, [when] he noticed a light in a part of the tube where
the mercury was moving; this phenomenon having surprised him, he immediately reported
it to the sçavans,1 . . .

After learning of the phenomenon from Johann Bernoulli (1667–1748), the
Englishman Francis Hawksbee investigated the subject extensively. This led him
to the discovery of the phenomenon “barometric light” that he called “body of fire”
which revealed the possibility of electric lighting. We will see in the next section the
importance of electric lighting in the development of Wireless Telegraphy. However,
it was only half a century later that Benjamin Franklin (1706–1790) proved, with his
famous kite, that a lightning strike was nothing else but an electrostatic discharge. In
the meanwhile, a London physicist named Samuel Watt observed that while rubbing
with his hand in the dark the head of his cane made of amber, it became luminous.
Thus, he also suspected a connection between frictional electricity and lightning.

It was during this period that the capacitor was invented. There are many various
versions about the history of this invention. At first, historiography credited Pieter
van Musschenbroek (1692–1761), professor at University of Leiden (also spelled
Leyden), for this invention that he described in a letter sent on January 20, 1746 to
René Antoine Ferchault de Réaumur (1683–1757), his correspondent at the Royal
Academy of Sciences in Paris. This letter was read by the French clergyman and
physicist Jean-Antoine Nollet (1700–1770) who gave to Musschenbroek’s experi-
ment the name of “Leyden experiment”. Nowadays, some historians consider that
this invention was made originally by Ewald Jürgen von Kleist (1715–1759), Dean
of the cathedral at Cammin in Pomerania (Germany) and so, there are no reasons to
keep on calling it the “Leyden experiment”. However, in June 1954, Pr. C. Dorsman
found in the Philosophical Transactions of the Royal Society (London) a letter “from
Mr. Trembley F.R.S. to Martin Folkes Esq; Pres. R.S. Concerning the Light caused
by Quicksilver, shaken in a Glass-Tube, proceeding from Electricity”. This letter is
dated: Hague, 4 Feb. 1745 N.S. (New Style), but was not read in a meeting of the
R.S. before Feb. 13 1746. In 1957, he published this letter with Crommelin [3] at the
end of which one can read:

There is an experiment that Mr l’Allamand has tried; he electrify’d a tin Tube, by means of
a glass Globe; he then took in his left Hand a Glass full of water, in which was dipped the
End of a Wire; the other End of this Wire touched the electrified tin Tube: He then touch’d,
with a Finger of his right Hand, the electrified Tube, and drew a Spark from it, when at
the same Instant he felt a most violent Shock, all over his Body. The pain was not always
equally sharp, but he says, that the first time he lost the Use of his Breath for someMoments;
and he then felt so intense a Pain all along his right Arm, that he at first apprehended ill
Consequences from it; tho’ it soon after went off without inconvenience. It it to be remarked,
that in this Experiment he stood simply on the Floor, and not upon the Cakes of Resin.

1See Picard [2].
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Mr.Musschenbroek the Professor has repeated this experiment, holding in his Hand a hollow
Bowl exceeding thin, full of water; and he says he experienced a most terrible Pain. He says,
the Glass must not be at all wet on the outside.

Thus, they concluded that “as early as the very beginning of the year 1745 (that is
nine months before von Kleist’s experiment) the Leyden jar was invented at Leyden,
by Allamand or by Musschenbroek or by both of them, exactly a year earlier than
the well-known experiments” described by Musschenbroek in his letter to Réaumur
dated from January 20, 1746 (Fig. 1).

Hence, electricity and discharge phenomena became a subject of science as well
as amusement as exemplified by the famous anecdote according to which Nollet
electrified twohundredperson in theHall ofMirrors (Galerie desGlaces) ofVersailles
before hismajesty the king Louis XV. Then, at the end of the 18th the Italian physicist
Alessandro Volta (1745–1827) gave to the Leyden jar the name of capacitor. In
1771, he had improved and popularized the electrophorus: a capacitive generator
used to produce electrostatic charge via the process of electrostatic induction. Then,
he published his research about the electrophorus in the Philosophical Transactions
of the Royal Society of London in 1782 and they were reproduced in his Complete
Works in 1816. In this paper Volta [4] wrote:

Fig. 1 The Leyden jar
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Questo artificio, voi forse già l’indovinate, consiste a riunire all eletrometro medesimo il
Condensatore.2

Then, he exposed the relationship between the tension v, the charge q and the
capacity C of the capacitor:

Ciò che abbiamdetto comprendersi facilmente che la tensione debbe essere in ragione inversa
delle capacita, ci viene poi mostrato nella maniera pi chiara dall esperienza.3

In a previous publication we have suggested to call this relationship, which can
be expressed in a modern formulation as q = Cv, “Volta’s law”. See Ginoux and
Rossetto [5]. OnMarch 20th 1800, Volta wrote his first letter to Joseph Banks (1743–
1820) in which he described the first true battery which came to be known as the
Voltaic Pile (see Fig. 2). This letter was sent for publication to the Philosophical
Transactions and read at the Royal Society of London on June 26th 1800.

On November 7th and 20th 1801, Volta presented his device at the Institut de
France before Napoléon who awarded him a gold medal. Although Volta made use
of the term “tensione” in his articles introducing thus in a qualitative way the voltage,
it was the French Physicist and Mathematician André Marie Ampère (1775–1836)
who defined accurately the concepts of current and voltage in his first mémoir of
1820 [7] wrote:

L’action électromotrice se manifeste par deux sortes d’effets que je crois devoir d’abord
distinguer par une définition précise. J’appellerai le premier tension électrique, le second
courant électrique.4

1.2 Continuous Arc Discharges

According to Anders [8] “Continuous discharges could only be obtained after endur-
ing energy sources became available, namely in the form of a battery of electrochem-
ical cells, invented by Volta in late 1799.” Nevertheless, the very first Voltaic piles
or batteries were not able to sustain continuous arc discharges due to their internal
resistance. Then, a race of making large batteries started all over the world between
the countries where the news of Volta’s invention was known. This “sort of exper-
imental fever” for the piles is exemplified by Ayrton [9] who wrote in her chapter
entitled “A short history of the arc”:

Paper after Paper was written describing new and interesting results obtained with the pile.
So numerous were these Papers in the course of the next year that in the middle of 1801 a
certain Dr. Benzenberg wrote to the editor of Gilbert’s Annalen:

2“This device, you probably already guessed, is to bring together all the same electrometers under
the name Capacitor.”
3“What we have said can easily be understood that the voltage ought to be in inverse proportion to
the capacity, as it is shown clearly by experiments.”
4“The electromotive action is characterized by two kinds of effects that I believe I must first distin-
guish by a precise definition. I will call the first voltage, the second electric current.”
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Fig. 2 Voltaic pile [6]

Could not the Annalen, in consideration of its object, be a little more varied? Galvanism,
interesting as it is, is still only a very small part of physics. We can apparently only expect
any real advance in knowledge from such work as is carried out on a large scale, and not
from each experimenter, whose slight knowledge and small apparatus allow him to discover
only what ten others have already found out before him.

Among the various experiments performedwith Voltaic piles (effect of the current
on living things, decomposition of matter, …) those which dealt with the heating
power of the current, more particularly with the sparks produced by making or
breaking a circuit in which current was flowing led directly to the discovery of the
continuous arc. As previously mentioned, the circumstances of this discovery were
subject of much research. More particularly the questions of who discovered the
continuous arc discharges and when they have been discovered are still debated.
However, Humphry Davy (1778–1829) is generally credited with this discovery as
recalled by Ayrton [9]:
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Later, in a lecture before the Royal Institution, given in 1801, Sir Humphry mentioned that
the spark passing between two pieces of well-burned charcoal was larger than that passing
between brass knobs, “and of a vivid whiteness; an evident combustion was produced, the
charcoal remained red hot for some time after the contact, and threw off bright coruscations
[10].”

Nevertheless, according to Ayrton [9] the internal resistance of the battery used
by Davy “was very great compared with what it should be in order to maintain an
arc and the passing of a spark would so lower the P.D. between the terminals that no
other spark could pass till the battery had somewhat recovered.” As a consequence,
Davy’s above description is not that of a continuous arc discharge but of a spark.
At that time, the problem was to increase the size of the battery to reduce their
internal resistance. However, it seems that it was solved by an unknown Russian
scientist. In an article published thirty-five years ago, Kartsev [11] disclosed that
Vasilii Valdimirovich Petrov (1761–1834) of St. Petersburg made experiments with
carbon arcs in 1802 during which he observed continuous arc discharges. Then, he
explained:

Petrov made an original improvement which overcame the earlier insurmountable obstacle
for the construction of such big piles - he placed the pile horizontally in three separate boxes.
The horizontal position of the pile permitted to avoid pressing-out of the electrolyte from
between the plates and removed limits for the pile’s height and capacity. The pile constructed
by Petrov was undoubtedly one of the biggest piles of that time [11].

Then, he published his results in 1803 in a book entitled “News of the galvani-
voltaic experiments which professor of physics Vasily Petrov had conducted by
means of a particularly huge battery consisting at times of 4200 copper and zinc
disks and installed at St. Petersburg Medicine and Surgery Academy” (see Fig. 3).
As pointed out by Kartsev this book “was by chance discovered in a library in the
town of Vilno at the end of the ninetieth century”.

Petrov wrote in his manuscript:

If two or three charcoal pieces are placed on a glass plate or on a bench with glass legs,
and if the charcoal is connected to both ends of an enormous battery using metallic but
isolated conductors, and if the two pieces are brought in close distance of one to three lines
[2.5–7.5mm], then a very bright cloud of light or flame shines, burning the charcoal more
or less fast, and one may illuminate a dark room as bright as one wants to [12].

Thus, according to Anders [8]: “Petrov had made, observed, and described [inde-
pendently, and earlier than Davy] the first continuous arc discharge. Moreover, he
suggested that the bright light or “flame” (plasma) could be used for lighting pur-
poses, the first possible real application of electricity apart from entertainment of
aristocrats.”

About six years after Petrov’s publication, and very likely unaware of it, Davy
pursued his experiments. According to Ayrton [9], Sir Humphry Davy’s laboratory
manuscript notes for the years 1805–1812 were collected by Michael Faraday and
then published in the Royal Institution. Concerning the years 1808 and 1809, one
could read:
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Fig. 3 Front page of V. V. Petrov’s book [12]

April 20, 1808.
A given quantity of muriatic acid gas was acted upon by dry charcoal; there was a continued
vivid light in the galvanic circuit.

August 23, 1809.
AN EXPERIMENT TO ASCERTAIN WHETHER ANY HEAT SENSIBLE TO THE
THERMOMETER IS PRODUCED BY THE ELECTRIC FLAME IN VACUO.
The jar which contained the apparatus consisted of a concave-plated mirror, so situated as
to collect the light radiating from the charcoal, and to concentrate them (sic) on the bulb of
a mercurial thermometer, which, together with the wires holding the two pieces of charcoal,
passed through a collar of leather. No heat was apparently produced by the light excited
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Fig. 4 Davy’s drawing of an horizontal [13]

in vacuo. The air being introduced, immediately the column of mercury rose. The light in
vacuo was in part of a beautiful blue colour, and attended with bright red scintillations.

Ayrton [9] concluded that:

The “vivid light” referred to in the first of these extracts is plainly an arc; but in the second,
the words “electric flame” leave no room for doubt, not only that Davy was using an arc, but
that it was no new phenomenon to him. When was the arc discovered then, and by whom?

Then, she explained that in 1812, Davy presented his Elements of Chemical Phi-
losophy published in 1812 inwhich he not only experienced continuous arc discharge
but also provide a drawing of it (see Fig. 4). Davy [13] wrote:

When pieces of charcoal about an inch long and one sixth of an inch in diameter, were
brought near each other (within the thirtieth or fortieth part of an inch, a bright spark was
produced, andmore than half the volume of the charcoal became ignited to whiteness, and by
withdrawing the points from each other a constant discharge took place through the heated
air, in a space equal at least to four inches, producing a most brilliant ascending arch of light,
broad, and conical in form in the middle.5

According to Ayrton [9]:

This very definite and beautiful description of the arc leaves no doubt that Sir Humphry
Davy was the first to show the long horizontal arch of flame that gives the arc its name6;
although the question whether or not he was the first person to obtain an arc of any shape
and size will probably remain for ever a mystery.

It seems so that she was unaware of Petrov’s works at that time. From 1812 to
1820, Davy didn’t do any important work concerning the electric arc. In July 5,
1821, Davy presented his new experiments on the influence of a magnetic field on
the electric arc before themembers of the Royal Society of London. Davy [15] wrote:

Mr. Pepys having had the goodness to charge the great battery of the London Institution,
consisting of two thousand double plates of zinc and copper, with a mixture of 1168 parts of
water, 108 parts of nitrous acid, and 25 parts of sulphuric acid, the poles were connected by

5Davy referred to Plate III, Fig. 18 which is presented in Fig. 4.
6Ayrton explained that François Arago gave to the electric flame the name of “arc”. See Arago [14].
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charcoal, so as to make an arc, or column of electrical light, varying in length from one to
four inches, according to the state of rarefaction of the atmosphere in which it was produced;
and a powerful magnet being presented to this arc or column, having its pole at a very acute
angle to it, the arc, or column, was attracted or repelled with a rotatory motion, or made to
revolve, by placing the poles in different positions …

According to Anders [8], such “column of electric light” is nothing else but a
plasma.

Thus, as a conclusion of this first part, it appears that Petrov in 1803 and thenDavy
in 1808 have been the very first to observe continuous arc discharges, i.e., plasma.
A full history of the electric arc can not be presented in this chapter, so, for more
details, we refer the reader to Ayrton [9] and Anders [1, 8, 16].

A few years after this discovery, one of the main practical applications of contin-
uous arc discharges was for street and large building lighting. Thus, the first electric
street lighting employing carbon arc lamps, also called “Electric candle”, was devel-
oped in 1875. On 30 May 1878, the first electric street lights in Paris were installed
on the avenue de l’Opera and the Place de l’Etoile, around the Arc de Triomphe, to
celebrate the opening of the Paris Universal Exposition. In 1881, to coincide with the
Paris International Exposition of Electricity, street lights were installed on the major
boulevards. The first streets in London lit with the electrical arc lamp were by the
Holborn Viaduct and the Thames Embankment in 1878. More than 4,000 were in use
by 1881. However, regardless of weak glow produced by electric arc, it had a major
drawback: the noise generated by the electrical discharge which inconvenienced the
population. As we will see below the solution of this problem will give rise to the
birth of Wireless Telegraphy.

2 The Birth of Wireless Telegraphy

The historical development of radiotelegraphy has been summarized as follows by
Stanley [17]:

The development of radio-telegraphy, from the fundamental fact that under certain circum-
stances an electric discharge will oscillate at a high frequency, may best be explained by
treating it in a historical manner (. . .).
As already pointed out Prof. Henry in 1838 (and later Fedderson in 1857) discovered that
under suitable circumstances the discharge of a Leyden jar, or condenser, would be oscilla-
tory, and would oscillate at high frequency.Kelvin (1853) proved the laws under which these
oscillations took place; showed that the time of oscillation depended on

√
L K , and that the

effect of resistance was to damp the oscillations. The conception of electric and magnetic
strains in the ether was due to Faraday; but Faraday, whilst a brilliant experimentalist, was
not a mathematician and thus did not foresee the far-reaching results of some of his experi-
ments. Faraday died in 1867.
In 1863 James Clerk Maxwell, by mathematical reasoning, formulated the theory that
light and radiant heat were electro-magnetic phenomena, caused by strains set up in the all-
pervading medium, similar to the electric lines and magnetic lines which we have already
discussed. He said that electro-magnetic disturbances traveled in the ether at a definite
velocity, that is to say the known velocity of light and radiant heat 186,000 miles, or 300,000
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kilometres per second. James Clerk Maxwell was a mathematician, not an experimentalist,
and his theories lacked experimental proof for 24 years.
However in 1887HeinrichHertz, a youngGerman Professor, issued the results of his exper-
iments, which proved conclusively the correctness of Maxwell’s theory (…).
It will be remembered that when an electrical discharge takes place in an oscillatory circuit
a portion of the oscillating energy is communicated to the surrounding ether [environment]
in the form of electric and magnetic strains, producing in it a wave motion [the propagation
of electromagnetic waves].
Thus the arrangement of circuit made by Hertz was the first open type of oscillator. It con-
sisted of a spark gap on each side of which were copper rods, 30 cms. long, terminating in
large square brass plates of 40 cms. side, or round discs of copper, brass, or zinc. Such a
Hertzian oscillator is shown in Fig. 5. Each side of the spark gap is joined to the high poten-
tial terminals of an induction coil, by which the oscillator is charged; the plates provide a
suitable amount of capacity effect in the circuit; inductance effect is present in every circuit,
even with straight wires. Using a suitable length of spark gap the discharge of this Hertzian
open circuit is oscillatory. (…)
Hertz detected the presence of ether disturbances, or ether energy [electromagnetic waves],
in the space around his apparatus by using what he called a “resonator,” corresponding to a
receiver in radio-telegraphy. It simply consisted of a stout copper wire circle (see R in Fig. 5),
of about 35 cms. radius, with a very small spark gap in the circle. When he held this circle
parallel to his oscillator [O], in such a way that the small spark gap was turned towards it,
he obtained minute sparks across the resonator gap.

Thus, the experiments of Hertz proved the accuracy of Maxwell’s theories as
well as the existence of electromagnetic waves or radio waves and opened up a new
and delightful field of scientific investigation. Nevertheless, it appeared as early as
1891 that the insufficient power caused by the high damping of spark-generated
waves was a barrier to overcome. So, physicists and engineers tried to construct a
continuous-wave transmitter which was finally discovered almost by chance.

2.1 Duddell Singing Arc

Indeed, in London, the physicist William du Bois Duddell (1872–1917) was com-
missioned in 1899 by the British authorities to eliminate the noise generated by the
electrical discharge of the carbon arc lamps used in the street lights. He thought up
the association of an oscillating circuit made with an inductor L and a capacitor C
(F on Fig. 6) with the electrical arc to stop the noise (see Fig. 6). Duddell [18, 19]
created a device that he named singing arc.

Duddell had actually created an oscillating circuit capable of producing not only
sounds (hence its name) but especially continuous electromagnetic waves. This
device would therefore be used as an emitter for wireless telegraphy until the tri-
ode vacuum tube replaced it. The singing arc or Duddell’s arc was indeed a “spark
gap” devicemeaning that it produced sparkswhich generated the propagation of elec-
tromagnetic waves shown by Hertz’s experiments as pointed out by Poincaré [20]:

If an electric arc is powered by direct current and if we put a self-inductor and a capacitor
in a parallel circuit, the result is comparable to Hertz’s oscillator…These oscillations are
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Fig. 5 Hertz spark gap oscillator

sustained exactly like those of the pendulum of a clock. We have genuinely an electrical
escapement.

In a series of “forgotten lectures” given by Poincaré [21] in 1908 at the École
Supérieure desPostes etTélécommunications (todayTelecomParisTech) and recently
“re-discovered” by Ginoux [5, 22–30], he stated that the existence of sustained oscil-
lations in the singing arc represented a stable regime of continuous waves necessary
for radio communication.

While improvements were brought to Hertz’s damped oscillator with Duddell’s
singing arc, i.e. to transmitter of radio waves now to be called Hertzian waves (as
above recalled), a new kind of detector was developed. Indeed, the small spark gap
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Fig. 6 Diagram of the singing arc’s circuit, from Duddell [18, 19]

of Hertz in his circle of wire, was a very crude detector, making manifest sparks only
at very short ranges. So, it became necessary to build a more sensitive detector which
would be also able to keep a traces of the sparks, i.e. of the Hertzian waves emission.
Such “memory effect device” was built as earlier as 1890 by Édouard Branly.

2.2 Branly Coherer and Branly Effect

Édouard Branly (1844–1940) was a French physician and physicist who greatly
contributed to the development ofWireless Telegraphy bymaking one of the very first
detectors ofHertzianwaves. Thus, by coupling theHertz oscillator orDuddell singing
arc, i.e., a transmitter with a detector, i.e., a receiver, it became possible to build
portable transmitters and receiver apparatus turningwhat was essentially a laboratory
experiment into a useful communication system. According to Dilhac [31]:

At the end of the 1880s, Branly went back to his research in pure physics, concentrating
on the influence of irradiation on the electrical conductivity of various substances. In June
1890 he used a Wimshurt machine to create sparks and to study the electrostatic discharge
of various substances submitted to the light from the spark (i.e., UV-rich radiation). Branly
had devised a first circuit to create sparks using the Wimshurt machine, and then a second
very simple circuit: a Daniell battery, a galvanometer, and a metallic disk all wired together
in series. The disk was initially electrically charged. The two circuits were initially close to
each other, so the light from the spark illuminated the disk. Following the spark, in some
cases a dramatic increase in disk conductivity could be detected by the galvanometer. In
November 1890 he replaced the disk by a tube filled with oxidized Zn particles. Just after
the spark, it was again found that the conductivity of the tube was increased by several
orders of magnitude. (…) He then put the circuit made of the battery, galvanometer, and
tube in another room, 20 meters away, separated by thick walls and a courtyard from the
Wimshurt spark-emitting circuit: the effect persisted while neither the light from the spark
nor its sound could be seen or heard by Branly sitting by the tube while his aide Rodolphe
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Gendron was operating the electrostatic machine. A small shock was found to restore the
initial conductivity value,7 while a new spark allowed the phenomenon to be repeated.

In 1891, Branly continued his researchwhichwere published in the French journal
La Lumière Électrique [33] and translated in the English journal The Electrician [34].
His contribution entitled “Variations Of Conductivity Under Electrical Influence”
was also reproduced in the appendix of the book of Sir Lodge [35]. Let’s notice
that in this book, Lodge also described, in a chapter devoted to “The History of the
Coherer Principle,” work prior to 1892 by a number of experimenters on the cohesion
principle, but himself only became aware of Branly’s work in 1892. However, in his
work, Branly explained with many details his experiments and device:

The object of this article is to describe the first results obtained in an investigation of the
variation of resistance of a large number of conductors under various electrical influences.
The substances which up to the present have presented the greatest variations in conductivity
are the powders or filings of metals. The enormous resistance offered by metal in a state
of powder is well known; indeed, if we take a somewhat long column of very fine metallic
powder the passage of the current is completely stopped. The increase in the electrical con-
ductivity by pressure of powdered conducting substances is well known, and has had various
practical applications. The variations of conductivity, however, which occur on subjecting
conducting bodies to various electrical influences have not been previously investigated.

In the same article, Branly [33–35], described what is nowadays known as the
Branly effect:

The Effect of Electric Sparks. - Let us take a circuit comprising a single cell, a galvanometer,
and some powdered metal enclosed in an ebonite tube of 1 square centimetre cross section
and a few centimetres long. Close the extremities of the tube with two cylindrical copper
tubes pressing against the powdered metal and connected to the rest of the circuit. If the
powder is sufficiently fine, even a very sensitive galvanometer does not show any evidence
of a current passing. The resistance is of the order of millions of ohms, although the same
metal melted or under pressure would only offer (the dimensions being the same) a resistance
equal to a fraction of an ohm. There being, therefore, no current in the circuit, a Leyden jar
(see Fig. 7) is discharged at some little distance off, and the abrupt and permanent deflection
of the galvanometer needle shows that an immediate and a permanent reduction of the resis-
tance has been caused. The resistance of the metal is no longer to be measured in millions
of ohms, but in hundreds. Its conductivity increases with the number and intensity of the
sparks. (…)
Restoration of Original Resistance. - The conductivity causes by the various electrical influ-
ences lasts sometimes for a long period (24h or more), but it is always possible to make it
rapidly disappear, particularly by a shock.

Let’s notice that the Branly effect remained unexplained and misunderstood till
the very recent studies of Eric Falcon and Bernard Castaing [36].

In this “ebonite tube” (see Fig. 8), the resistance horizontally between plates C
and D, or vertically between plates A and B, could be measured independently. So,
Branly found that the conductivity through his tube changed simultaneously in both
directions. Dilhac recalled that in 1892:

7Branly [32] wrote in his note: “the variation of resistance is almost completely suppressed by
various methods, notably by striking a few small yanks on the tablet which supports the tube.”
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Fig. 7 Experimental setup used by Branly [33]

Fig. 8 Branly’s filings tube
(radioconductor or coherer),
from Branly [33]
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Lodge improved Branly’s tube by adding a relay automatically triggering a shock after a
decrease in electrical resistance, making the device usable for wireless transmission. Lodge
coined the term Branly’s coherer (from Latin cohaere, to stick) referring to his first under-
standing that themodifications in resistancewere related to smallmovements of the particles,
considered as dipoles, due to electrostatic effects.

However, Branly didn’t accepted the term coherer for his device to which he pre-
ferred the neologism radioconductor. In 1897, Branly [37–39] explained the reasons
of his choice:

My filings received fromLodge the name of coherers, this name has been generally accepted.
This expression is based on an incomplete examination of the phenomenon and an incor-
rect interpretation; I have proposed the name of radioconductors, which reminds us of the
essential property of discontinuous conductors to be excited by electrical radiation.

From 1894 andwhile using aHertz’s oscillator as transmitter and a Branly coherer
as receiver, the famous Italian inventor Guglielmo Marconi (1874–1937) began to
conduct experiments in radio waves. The next summer, he was able to transmit
signals up to one half mile. He made his first demonstration of his transmitter-
receiver system for the British government in July 1896 and in March 1897, he
transmitted Morse code signals over a distance of about 3.7 miles. In France, on
November 5, 1898, the scientific instrument manufacturer, Eugène Ducretet (1844–
1915) performed a demonstration of wireless communication in the presence of
representatives of the Acadèmie des Sciences between the third floor of the Eiffel
Tower and the Panthéon 2.5 miles away while using a spark-gap transmitter of his
invention and a Branly coherer as receiver. BetweenMarch 27 and 29, 1899Marconi
realized the first wireless transmission over the Channel between Dover in England
and Wimereux in France with his system (see Fig. 9).

According to Stanley [17] (see Fig. 9):

Marconi included in the local circuit a little electro-magnet [T], so that when the local current
flowed the magnet attracted an armature of soft iron to which was attached a little hammer;
this hammer striking against the coherer [C] caused it to decohere so that it was ready to be
again affected by another impulse, or train of ether waves [electromagnetic or radio waves].
The time of action could be made long or short according to the length of time the oscillator
switch was closed; thus a scheme of signals, such as the Morse Code, could be used.

On March 29, 1899 Marconi sent the following telegram to Édouard Branly:

Mr.Marconi sends toMr. Branly his regards over the Channel through thewireless telegraph,
this nice achievement being partly the result of Mr. Branly’s remarkable work.

In the beginning of the twentieth century, while using the Duddell’s singing arc
(see Sect. 2.1), theDanish physicist, Valdemar Poulsen (1869–1942), built an arc gen-
erator that produced continuous waveswith very high frequencies. Then,many efforts
weremade to transmit human speechwith such system.Nevertheless, it appeared that
it was impossible with spark technology. Moreover, although the coherer was used
successfully for several years, it soon showed its poor efficiency and sensitivity. It
was progressively replaced by crystal of Galena also called “cat’s-whisker detector”
and then, by the famous Lee de Forest (1873–1961) “audion” valve or triode. This
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Fig. 9 Marconi’s first receiving circuit, from Stanley [17]

electronic detecting or amplifying vacuum tube led to a significant development of
Wireless Telegraphy. Then, Branly coherer and the Branly effect seemed to have been
completely forgotten during nearly half a century (see next section). Thus, during the
night of April 15, 1912, the Titanic had sent its last message with the Marconi Wire-
less Installation.8 Nevertheless, a magnetic detector, commonly known as “Maggie,”
working in conjunction with a Marconi multiple tuner, replaced the less-efficient
coherers of previous years. However, eight months after Titanic disaster an article
entitled “Hunting for Gold with Wireless Waves” was published in July 1912. In this
really incredible publication, the authors claimed that:

As is well known, the wireless waves are not electric, but a form of oscillations or waves set
up in the ether by the discharge of electric sparks. These oscillations readily penetrate paper,
porcelain, sands and clays. But should a metal plate be encountered they are reflected. It is on
these well demonstrated principles that the use of wireless for exploring the earth’s interior
is based. In practice two instruments are employed, the oscillator, or sender, and the coherer
or receiver, substantially of the same nature as those used in wireless telegraphy. Each of
these instruments is placed at the focal point of a parabolic metal reflector. In exploring the

8Marconi operators used first the distress signal - CQD - which boomed out over the Atlantic.
Then, they desperately tried the new distress signal - SOS - that had been introduced a few years
before. In 1906 the International Radio Telegraphic Convention in Berlin created the signal “SOS”
for summoning assistance. The letters were chosen for their simplicity in Morse Code - three dots,
three dashes and three dots.
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earth, the oscillator and coherer are so adjusted that the waves emanating from the former
are reflected so that, if no obstacle were interposed, they would strike the mirror of the latter
in parallel lines and therefore converge on the coherer at its focus. But in the path of the
rays from the transmitter to the receiver is placed a metal plate which prevents the passage
of waves to the receiver and reflects them obliquely into the earth. The waves pass readily
through comparatively dry strata of sand and clays, much as light penetrates glass, but when
an ore body or watercourse is encountered the rays are deflected upward through the earth as
a mirror casts back sunlight . The waves in their upward flight are arrested by the reflector of
the receiver and the angle to which the receiver’s reflector must be turned in order to catch
and focus them on the coherer, and the distance between the center of the interposed reflector
plate and the focal point of the receiver’s reflector furnishes a means to calculate the .depth
and position of the ore body or watercourse. An electric gong inserted in the power circuit
of the receiver gives the alarm when rays pass from the oscillator to coherer.9

3 Coherer-Based Computer Memories

According toDilhac [31] “With the absence of subsequent industrial applications, the
lack of accuracy of the coherer as a scientific instrument, and the difficulty of elabo-
rating a definitive theory despite the comprehensive experimental work performed by
Branly, the Branly effect fell into oblivion.”. Indeed, in the “Branly effect”, recalled
in the previous section, the falling of the resistance through the coherer tube lasts
a certain time (Branly [33–35] spoke about “24h or more”), longer than the spark
produced by the electric arc. So, it can be interpreted as a “memory effect”. That’s
probably the reason why a serious attempt was made during the early 1950s to study
the feasibility of coherer-based computer memories and / or logic gates. Because
some types of coherers were bistable, there was a possibility of using them as mem-
ory elements. Far from being far fetched, this idea was taken very seriously by the US
government as exemplified by the four reports [40–43] discovered by one of us [44]
and which will be briefly analyzed below. Thus, at the end of 1950, scientists of the
Mellon Institute Of Industrial Research (founded in 1913 by AndrewW. Mellon and
Richard B. Mellon and located in Pittsburgh) were hired to proceed on a research
program for the study of computer components. The aim of this program was to
discover and develop devices which would perform one or more of the functions of
digital computers, namely storage, selection, amplification, comparison, and arith-
metic operation on information pulses. Components small in size, light in weight,
low in cost and capable of being manufactured on a large scale were sought. So, in
the first “Quarterly Report” entitled: “Computer Components Fellowship” [40] one
can read in the abstract:

Electrolytic diode rectifiers, cold-cathode discharge tubes and coherers have been the subject
or active study during the period covered by this report. Each of the devices shows potential
promise as a computing machine component.

Then, in paragraph III of this reports, entitled “Coherers”, the authors recall in
their introduction the Branly effect:

9Popular Mechanics Magazine Volume 18, No. 6, 858–859, December 1912.
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A number ofmetallic powders behave as insulators under the influence10 of a low voltage and
as conductors under the action of a high voltage. A coherer is a device for making use of this
property, and it consists essentially of a pair of electrodes immersed in the voltage-sensitive
powder. The transition from the non-conducting to the conducting state takes place abruptly
when the potential difference between the electrodes reaches a certain critical value, and the
coherer remains in the conducting state even after the “firing” voltage is removed. A return
to the nonconducting state is brought about by mechanical vibration or some other suitable
means of erasure. The coherer may also be transferred from the conducting state under the
influence of electromagnetic radiation. For example, a spark occurring at a distance of many
feet from the sensitive powder is sufficient to “fire” or cohere it, and, in this laboratory, a
particular coherer was made to fire simply by turning on a power supply unit in its near
vicinity. The use of the coherer by Marconi to detect wireless messages is, of course, well
known.
A reliable device having the properties described above could clearly serve the functions of
switching and storage in a digital computer, and for this reason it was decided to study the
coherer in detail.

In their discussion, the authors concluded as follows:

The preliminary experiments described above indicate that the coherer is a promising device
for performing switching and storage functions. Its action as a switch is similar to that of a
single pole-single throw relay in that the switching circuit may be isolated completely from
the information carrying circuit. Its “on-off” actionmay bemade extremely fast if the erasure
is effected by “mechanical tapping” in the form of a supersonic pulse, and erasure by this
means is justified if the application permits the simultaneous erasure of a large number of
coherers as, for example, in a pyramid-selector fabricated from coherers or in a storage block
containing a large number of digits. The lack of a rapid method for the erasure of individual
coherers is therefore not a critical limitation. More serious is the lack of experience and
information on the problem of producing coherers with reproducible characteristics. The
parameters affecting the behavior of these devices will therefore be the subject of future
study.

This last problem had been already observed byMarconi as recalled byHong [45]:

Marconi had difficulties with his receiver. He started with a Branly-tube coherer and a
galvanometer. (…) However, he found the Branly coherer unstable: it “would act at thirty
feet from the transmitter, [but] at other times it would not act even when brought as close as
three or four feet.”

Unfortunately, it has not been possible for instance to obtain the second “Quarterly
Reports”. However, in the abstract of the third one can read:

Thework on electrolytic diodes, cold-cathode gas diodes, and coherers presented inQuarterly
Reports Nos. 1 and 2 of the present series has been continued. The new information on these
components is set forth in the first three sections of this report.

Indeed, in paragraph III of this third reports, also entitled “Coherers”, the authors
present the results of their new experiments:

10By applying a radio frequency pulse directly to the coil surrounding the voltage-sensitive (100
mesh) iron powder.
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As explained in Quarterly Progress Reports Nos. 1 and 2 of the present series, certain metal-
lic powders behave as insulators under the influence of a low voltage and as conductors
under the action of a higher voltage. A coherer is a device for making use of this property,
and it consists essentially of a pair of electrodes immersed in the voltage-sensitive metallic
powder. On raising the d.c. potential difference between the electrodes to a certain critical
value, the resistance of the coherer falls from an essentially infinite value to some value in
the range from zero to one hundred ohms. For “coherer” powders selected at random the
critical (“firing”) voltage as well as the “fired” resistance varies by a factor of two or three
on repeated operation. To effect a return to the state of infinite resistance it is generally
necessary to mechanically tap the housing which contains the voltage-sensitive material. We
have found, however, that certain types of coherers may be “decohered” by discharging a
condenser across the coherer electrodes. The coherer may therefore be returned from a state
of finite resistance to infinite resistance, and vice versa, by electrical means alone. This situ-
ation suggested the possibility of constructing a “coherer oscillator,”11 and a low-frequency
oscillator was in fact constructed. It is described in the succeeding part of this report.
In the above discussion referencewasmade to “firing” coherers with the aid of a d.c. potential
difference. A radio frequency voltage applied across the coherer electrodes is equally effec-
tive. In fact if one side of a capacitor is connected to a radio frequency voltage source, and
the other electrode of the capacitor is dipped into the voltage-sensitive powder, the resistance
between the coherer electrodes immediately falls to a low value. Also, if several electrodes
are immersed in the voltage-sensitive powder; the resistance between any arbitrarily chosen
pair will be found to be quite low (Quarterly Progress Report No. 2, p III-7). Coherers will,
in fact, “fire” in radio frequency fields, doubtless because of the voltage induced between the
coherer electrodes. The problem of “firing” coherers is therefore a simple one; the problem
of decohering them is much more difficult. The capacitor method of decohering described
above is believed to be a low-frequency electromechanical phenomenon, since the deco-
hering action was observed to be frequently accompanied by disruptive sparks within the
voltage-sensitive mass. With respect to individual coherers there consequently appear to be
two main problems:

(a) the problem of decohering and

(b) the problem of obtaining coherers which are more uniform in regard to firing potentials
and cohered resistance values.

Research pointed toward the solution of these problems is justified only if “ganged” coherers
may be used as successful switching devices, and we describe for the first time in part 3 of
the present section a successfully operating binary-to-octal digital converter using coherers
as the sensing-elements. Part 4 of the present section describes certain unsuccessful attempts
to effect decoherence by means of supersonic pulses and magnetic phenomena.

So, as soon as, 1951, a binary-to-octal converter employing coherers as the switch-
ing elements was considered. This attempt is described in the same third “Quarterly
Report” [41] as follows:

In Quarterly Progress Report No. 2 some attempts to switch with three electrode coherers
were described. Two of the electrodes consisted simply of wires immersed in a voltage-
sensitive powder. The third electrode (immersed in the powder) consisted of one terminal of
a capacitor, the other end of which could be switched to a radio frequency voltage source.
In this way the coherer was “fired”; the resistance between arbitrarily chosen pairs of the

11More than forty years before, Eccles [46] provided in a contribution published in 1909 the set of
ordinary differential equations modeling the coherer’s oscillations.
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three electrodes falling from a very high value (>109 ohms) to only a few ohms. For single
isolated coherers the “firing” technique appeared to be 100% efficient. However, when two
or more coherers were connected in series, an r.f. pulse app1ied to one of the coherers fired
not only the immediately affected coherer, but one or more of the neighboring ones. This
behavior was eliminated almost entirely by connecting the junction points between coherers
to ground potential through small capacitors. An effort was therefore made to adapt this
switching technique to the construction of a binary-to-octal digital converter. This more
complicated set-up unfortunately did not work in a reproducible way.

In the fourth “Quarterly Report” [42], the authors thus conclude that:

Because of their bi-stable nature, coherers are natural devices for the storage of binary
information. They may also be used as “switching elements” as demonstrated in Quarterly
Progress Report No. 3 where a binary-to-octal digital converter employing 14 coherers as the
switching elements was described. The application of coherers as either storage or switching
elements is, however, considerably vitiated by the need for mechanical agitation to effect
decoherence, that is, to effect return from the state of low resistance to (practically) infinite
resistance. In the Progress Report referred to above, an account of several unsuccessful
attempts to bring about decoherence by means of supersonic waves and by magnetic fields
was described. These experiments are continuing as time permits but no noteworthy new
results have been obtained.

In their fifth “Quarterly Report” [43], they give some of the reasons for which
they have probably chosen to study the “coherer”:

The coherer consists of an aggregate of oxide-coated powder in which are immersed two
metal electrodes. The device is of 1nterest because it is a bi-stable element which will remain
in either of its two stable states without the use of any “holding power”. In addition, it is
extremely inexpensive. The information contained in the present report throws considerable
light on the mechanism of its operation. (…)
The section on coherers in this report is devoted largely to the behavior characteristics of
this device. In particular, the mechanisms of coherence and decoherence are examined at
some length, and the implications of the findings for the potential application of the device
as a computer component are discussed. The basic facts are these: the coherer constitutes
an attractive device for computer application because it may be maintained in either of two
stable states without the use of an external power source. It suffers from the disadvantage
that it is unsymmetrical in operation in that the time (energy) required to transfer it from
a state of high resistance to a state of low resistance (coherence) is much smaller than the
time (energy) required to effect the reverse transition (decoherence). The suitability of the
device as a computer component increases as the time required for decoherence decreases.
The major effort at the present time is therefore pointed toward decreasing the decoherence
time. Decoherence by means of magnetic forces shows some promise.

Then, they presented the “Mechanisms of Coherence” or Branly effect as follows:

The voltage-sensitive powder employed in coherers consists generally of finely dividedmetal
particles each of which is coated with a very thin oxide layer.When these particles are placed
in contact with each other in an electrical field, a redistribution of charge is effected such
that the electrical field within the particles proper is reduced to zero. (. . .)
As the potential difference between the electrodes is slowly increased a point will be reached
at which one or more of the oxide layers will break down and bridge the gap between the
adjacent particles with a filament of metal. This action will have the effect of raising the
potential difference across the remaining oxide interfaces and thus lead to further breakdown.
The process is therefore of a cascade type and occurs in an extremely short time.
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The mechanism described above corresponded to the most well-known theory at
that time concerning the action of the coherer. This was that of Holm [47] quoted by
the authors of this fifth “‘Quarterly Report” a few pages below. Finally, they discuss
the possibility to use the “coherer as a computer component”:

Asmentioned in the introduction to the present section, the coherer is attractive as a computer
component because it remains in either of its stable states without the application of power.
Its future as a computer component depends primarily on the speed with which it may be
transferred from one state to another, and more particularly on the rate at which it may
be decohered. The evidence described above indicates that if a powder-mass coherer is to
be used in a reproducible way, considerable energy must be packed into the decohering
process, and this energy must impart an impulsive movement to the cohered chain. Attempts
to supply the energy magnetically have been unsuccessful until recently because, in previous
experiments, the mass motion of the metal powder was inhibited and constrained. If the
cohered mass is, however, permitted some freedom of motion, and if the holding-current is
released, decoherence will result.

A measure of the importance of these “Quarterly Reports” can be appreciated
from the fact that no less a leading computer designer at the time than John Presper
Eckert (1919–1995), the co-inventor of the ENIAC (Electronic Numerical Integrator
andComputer), one of the earliest electronic general-purpose computersmade, refer-
enced these reports in one of his papers [48]. Moreover, these researches concerning
the coherer were far from being the only one. From the end of September 1953, at
least four confidential IBM report, recently declassified were written by a systems
engineer named Fred Bernard Wood (1917–2006). In the first report entitled “The
coherer as a storage element”, Wood [49] wrote in his conclusions:

The increase of the mean deviation of the firing voltage indicates potential troubles with
multiple coherer units. In view of these potential difficulties, it is recommended that the
coherer action be more thoroughly explored and checked by suitable experiments.

On April 28, 1954, in his second confidential IBM report, Wood [50] provided
an extensive chronological biography on coherers. We only reproduce below the
interesting period of 1910–1953 with Wood’s annotations:

176. B. Szilard, “Action of Metallic Contacts on a Filings Coherer.”
Compt. Rend. 150, 1670–1672 (1910); Sci. Abst. A13.1133 (1910).

177. E. C. Green, “The Development of the Coherer and Some Theories of Coherer
Action.” General Electric Review, 20, 369–374 (1917).

178. E. C. Green, “Development of the coherer and some theories of coherer action.”
Sci. Am. S. 84, 268–9 (Oct. 27, 1917).

179. W. G. Palmer, “The Use of the Coherer to Investigate Adsportion [sic, should
read “Adsorption”] Films.”
Proc. Roy. Soc. A. 106, pp. 55–68 (1924).
Study of the effect of the gas surrounding the “coherer” detector.
concludes that adsorbed gas film is displaced by high enough field.

180. R. H. Wright and M. J. Marshall, “The Effect of Adsorbed Gas on the Contact
Resistance of Carbon.”
Trans. Am. Electrochem. Soc. 454 [sic, should read 54], 149–162, Sept. 1928.
Oxygen is adsorbed on carbon surfaces which changes the contact resistance.
This may help explain carbon coherer.
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181. John R. Bowman, “Electrochemical Computing Elements.”
Annals Comp. Lab. Harvard, 119–124 (1951); Proceeding of a Second Sym-
posium on Large-Scale Digital Calculation Machinery, Sept. 1949.

182. Harvard Computation Laboratory, “Electrochemical Computer Elements.”
Progress Report No. 8, pp. XII-l to XII-10.

183. Ragnar Holm, “The Electric Tunnel Effect across Thin Insulator Films in Con-
tacts.” Jour. Appl. Phys. 22, 569–574 (1951); Errata, 1217.

184. Mellon Institute of Industrial Research, Quarterly Reports of the Computer
Component Fellowship No. 347. Contract CLN AF 19 11221–1236 J. Coherer
research is reported in reports Nos. 1, 2, 3, 4, and 5 (1951–1952) and No. 12
(1953).

Wood’s bibliography on coherers is of great importance since it shows that, con-
trary to what one thought, the coherer had not been “completely forgotten” after the
advent of the vacuum tube diode or triode in 1910s. Thus, the only gap in its history
(which should be subject to extensive research) seems to be between 1928 and 1946.
Nevertheless, even during this period, Holm [47] had made many investigations in
this field as exemplified by the bibliography of his book. Moreover, the last reference
of the above bibliography proves that Wood was aware of the works performed at the
Mellon Institute of Industrial Research. Wood also listed the “IBM Coded Reports
on Coherers and Related Subjects”

– 100.000.239 American Phys. Soc., Rochester, June 18, 1953.
Abstract of P. Kisliuk, “Electrical Breakdown of Extremely Short Gaps.”

– 102.003.250 C. A. Speicher, “Dielectric Rupture and Repair Storage.”
– 203.001.026 H. E. Singhaus, “Preliminary Progress Report on the Coherer Inves-
tigater Program.” May 1, 1953.

– 203.002.047 F. B. Wood, “The Coherer acts a Storage Element.” Sent. 22, 1953.
– 203.003.059 J. LMasterson and P. L. Pecchenino, “Matrix Storage Using Coherer
Cells.”

– 216.082.048 H. E. Singhaus, “Some Experimental Data on Coherers. Showing
Cohering Voltages as a Function on Electrode Spacing and Configuration.” Oct.
15, 1953.

In his third and fourth confidential IBM reports published onMay 14, 1956,Wood
[51, 52] concluded that:

Separately connected coherers have regular probability of firing curves from which buffer
storage coherers can be designed for a specified accuracy, provided the frequency of erasing
information is only a few times a second. The probability of error is decreased by putting three
cells in parallel. Coherer matrices without back circuit eliminators are theoretically possible,
but have not been satisfactorily realized. The failure to realize satisfactory matrix operation
lies primarily in the lack of control of the oxide thickness and rate of growth. “Resistox12”
treatment of coherer powder has decreased the variation of coherer characteristics with time.

12A treatment developed by the Glidden Co., known as “Resistox” for the preservation of copper
powder has been found useful in maintaining a consistent oxide layer. Copper powder obtained
from Metals Disintegrating Co. is reduced in hydrogen to remove the original layers of oxide.
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Fig. 10 Schematic of transmitter and receiver (coherer) housed in the toy bus

On September 1st, 1957, a curious application of Branly coherer was presented
in Electronics magazine, a trade journal that covered the radio industry and its later
spin-offs. It was published by McGraw Hill until 1988. At page 200, the author,
probably David A. Finlay, presented a “Radio-Controlled Toys Use Spark Gap” (see
Figs. 10 and 11). He explained that:

A LINE of radio-controlled TOYS manufactured by the Masudaya Toys Co., Tokyo, Japan,
goes back to one of the oldest methods of radio transmission and reception, the spark gap
and coherer.
Radiation from the spark gap is wideband, 150 kc to 180 mc, and prone to cause interference
with radio and tv reception, but the radiated signal is very weak. (…)
The bus receiver uses a coherer, a glass envelope filled with carbon powder. The antennas
indicated in Fig. 1 (Fig. 10) are short vertical whips. The drive mechanism of the bus is
mechanically arranged so that successive pulses cause the bus to start, turn right, go straight,
turn left, go straight and stop.

4 Branly Coherer: The Very First Memristor

In 1971, Leon Chua postulated the existence of a missing electrical element, the
“memristor”, which was finally discovered ten years ago by Strukhov et al. [53] on
May 1st, 2008. Contrary to what one might think, it is not by experimenting, but by
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Fig. 11 Radicon Bus

logical deduction that Professor L. O. Chua was able to postulate the existence of
a missing circuit element. In his now famous publication of 1971, [54] considered
the three basic building blocks of an electric circuit: the capacitor, the resistor and
the inductor as well as the three laws linking the four fundamental circuit variables,
namely, the electric current i , the voltage v, the charge q and the magnetic flux ϕ.
Then, [54] explained that:

By the axiomatic definition of the three classical circuits elements, namely, the resistor
(defined by a relationship between v and i), the inductor (defined by a relationship between
ϕ and i), and the capacitor (defined by a relationship between q and v). Only one relationship
remains undefined, the relationship between ϕ and q.

He thus concluded from the logical as well as axiomatic points of view, that it is
necessary, for the sake of completeness, to postulate the existence of a fourth circuit
element to which he gave the name memristor since it behaves like a nonlinear
resistor with memory. Then, he established the “relationship” between the magnetic
flux ϕ and the charge q:
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Fig. 12 The four
fundamental two-terminal
circuit elements, from
Strukhov [53]

Resistor
dv = Rdi

Capacitor
dq = Cdv

Inductor
d  = Ldi

Memristor
d  = Mdq

Memristive systems

q

v

i

d
 =

 v
d
t

d  = idt

ϕ = Mq

We suggest to call this relationship: Chua’s law. At that time, he also proposed a
symbol (see Fig. 12).

In order to emphasize a strong analogy between the memristor properties and
that of Branly coherer let’s focus on the interesting properties 4 & 5 established by
Prof. Chua in his second publication on this subject [55]. According to Chua [55]
memristive systems are hysteretic:

Property 4–Double-Valued Lissajous Figure Property
A current-controlled memristive one-port under periodic operation with i(t) = I cosωt
always gives rise to a v − i Lissajous figure (see Fig. 13) whose voltage v is at most a
double-valued function of i

Property 5 was summarized by Chua and Kang 1976 by saying that “the v − i
curve is odd symmetric with respect to the origin.”. In their conclusion Chua and
Kang [55] gave more details about this fundamental property:

Various generic properties of memristive systems have been derived and shown to coincide
with those possessed bymany physical devices and systems. Among the various properties of
memristive systems, the frequency response of the Lissajous figure is especially interesting.
As the excitation frequency increases toward infinity, the Lissajous figure shrinks and tends
to a straight line passing through the origin-except for some pathological cases where the
bibs13 stability property is not satisfied. The physical interpretation of this phenomenon is
that the system possesses certain inertia and cannot respond as rapidly as the fast variation
in the excitation waveform and therefore must settle to some equilibrium state. This implies

13Bounded-input bounded-state.



26 J.-M. Ginoux and T. Cuff

Fig. 13 Hysteretic effect,
from Chua [55]

Fig. 14 Frequency response
of Lissajous figures, from
Chua [55]

that the hysteretic effect of the memristive system decreases as the frequency increases
(see Fig. 14) and hence it eventually degenerates into a purely resistive system.

In a recent publication, Chua [56] renamed such double-valued Lissajous figures
presented in Figs. 13 and 14 as pinched hysteresis loops. Then, he explained that:

All 2-terminal non-volatile memory devices based on resistance switching are memristors,
regardless of the device material and physical operating mechanisms. They all exhibit a
distinctive “fingerprint” characterized by a pinched hysteresis loop confined to the first and
the third quadrants of the v-i plane whose contour shape in general changes with both the
amplitude and frequency of any periodic “sine-wave-like” input voltage source, or current
source. In particular, the pinched hysteresis loop shrinks and tends to a straight line as
frequency increases.

Thus, the existence of a double-valuedLissajous figure, i.e., of apinched hysteresis
loops is the fingerprint of a memristor or a memristive device [57].
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Fig. 15 Various
embodiments of coherer
used for experimentation,
from Gandhi et al. [60]

Five years ago Gaurav Gandhi, Varun Aggarwal and Leon Chua published two
articles [58, 59] in which they stated that the “Coherer is the elusive memristor”. In
their works, they replicated three embodiments of the coherer and autocoherer: an
Iron FilingCoherer (IFC), an IronChainCoherer (ICC), and an IronMercuryCoherer
(IMC).14 Their first embodiment, namely, Iron Filing Coherer (IFC), consisted of
a tube containing closely-packed iron filings with electrodes in contact with the
metal filings at the two ends of the tube. In the second embodiment, called Iron
Chain Coherer (ICC), iron filings were replaced by a chain (linear assembly) of iron
beads and the third embodiment was an embodiment of the self-recovering coherer
consisting of a U-tube filled with mercury forming contact with an iron screw on
one side. In the third embodiment, henceforth referred as Iron Mercury Coherer
(IMC), one electrode was connected to an iron screw, whereas the other dips into
mercury on the other side of the U-tube. Depending on the packing density (IFC),
pressure applied (ICC) and contact area (IMC), the devices showed a continuum of
states between a nonlinear high-resistance state and amore linear low-resistance state
(see Fig. 15).

In the beginning of the twentieth century, the Indian physicist and physiologist,
Jagadish Chandra Bose (1858–1937) made deep investigations and many experi-
ments on the coherer. He first presented his results to the 71st Meeting of the British
Association for the Advancement of Science, Section A at Glasgow on September 12,

14They repeated the experiment with several metals, including aluminum and magnesium flakes
and nickel and zinc-coated ball bearings. They reported qualitatively similar results in all these
experiments.
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Fig. 16 Cyclic curves showing conductivity Hysteresis, from Bose [61]

1901. Although Bose [61] observed (probably for the first time) that coherers charac-
teristics demonstrate a pinched hysteresis i-v curve in the first quadrant (see Fig. 16)
and exhibited multiple stable resistance-states, he could not establish a systematic
way to electrically reverse the diminution of resistance.

Then, Gandhi et al. [58–60] activated their three devices “by different current-
mode input signals in their nonlinear mode, and their transient behavior was
recorded.” They found that the three devices show similar qualitative behavior but
exhibits state-dependent resistance. They plotted the current-voltage V-I characteris-
tics of their devices for a current-mode sine wave signal of increasing amplitude (see
Fig. 17). They observed that the three devices exhibit the famous pinched hysteresis
loops and various possible current-voltage values for the same current (as predicted
by Chua [54, 55], see Figs. 13 and 14). Thus, Gandhi et al. [58–60] stated that their
three embodiments of the coherer and autocoherer are memristors. Let’s notice that
such current-voltage characteristic curves had already been obtained by Falcon and
Castaing [36] in 2005. Nevertheless, at that time, the memristor had not been already
built by Strukhov et al. [53] who published their results on April 30, 2008.

So, Gandhi et al. [58–60] concluded as follows:

On activating by any bipolar current input, the device gets programmed into one state in the
positive cycle, and a different state in the negative cycle (see Fig. 17). It keeps oscillating
between these two stable states, forming the famous eight-shaped pinched hysteresis loop
in its V-I characteristics.
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Fig. 17 Current-voltage
characteristics of the three
devices for a sine wave input
signal, from Gandhi et al.
[58–60]

We find that the resistance of the device is a function of the magnitude of Imax for either
directions of current, but with a quantitatively different state-map, making it behave as a
resistive RAM.15 The bistable switching,16 the existence of the pinched hysteresis loop and
ability to act like a resistive RAM qualifies the coherer and auto-coherer to be a memristor
[57].

According tomany researchers such as Strukhov [53] andStatholpoulos et al. [62],
ReRAM (resistive RandomAccessMemory) is seen as a replacement technology for
DRAM (Dynamic Random Access Memory) and flash memory. Resistive random-
access memory (ReRAM or RRAM) is a type of non-volatile (NV) random-access
(RAM) computer memory that works by changing the resistance across a dielec-
tric solid-state material. Moreover, in a report published online in 2011, Williams
claimed that “resistive RAM are both types of memristor17”. Nowadays, memristors

15Resistive Random Access Memory.
16According to what has been recalled above, the bi-stability of some types of coherers led to the
possibility of using them as memory elements.
17“HP and Hynix to produce the memristor goods by 2013,” 10 Oct. 2011.
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are intended to be used as memory elements in computer machines. So, this is not
really surprising to notice that half a century ago, scientists had already considered
to do the same with Branly coherer.

5 Conclusion

In this work, starting from historical and recent research, we have first recalled
the origin of arc plasma science or continuous arc discharges and one of its most
important applications: Wireless Telegraphy. Then, a summary of the development
of radiotelegraphy has reminded the famous Hertz’s experiments allowing on the
one hand to confirm the existence of electromagnetic waves predicted by Maxwell
and, on the other hand, the building of the first transmitter of radio waves now
called Hertzian waves. The conception of one of the very first receivers imagined by
Édouard Branly, namely the “coherer” was then presented. Although the coherer has
been almost immediately superseded by diodes and triodes, its working principle,
the so-called “Branly effect”, gave rise to extensive investigations till very recently.
In fact, subjected to electromagnetic waves, the coherer’s electrical resistance varied
from high to low and persisted after the radio signal was removed. Such bistable
behavior led to consider the coherer as a memory device. The recent discovery of
confidential reports such as the five “Quarterly Reports” as well as the four confi-
dential IBM reports, recently declassified, has changed our point of view concerning
the fact that the coherer has not been “completely forgotten” after the advent of
the vacuum tube or triode in 1910s. Moreover, the brief analysis of these reports
has been sufficient to show that many attempts were made during the early 1950s
to study the feasibility of coherer-based computer memories. Thus, the particular
features of Branly coherer, i.e., the Branly effect led naturally to associate such a
device with the so-called “memristor” the existence of which has been predicted
by Leon Chua in 1971. Ten years age, Resistive random-access memory (ReRAM)
were considered as memristors which are intended to be used as memory elements in
computer machines. Finally, five years ago, a connection between both coherer and
memristor was established. So, this confirms that the many searchers and engineers
who attempted to build, in the 1950s, coherer-based computer memories were not
on the wrong track. To conclude, we could also say that plasma science has had a
role of great importance in the development of Wireless Telegraphy and in that of all
the devices that have been built since.
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Magnetron Modes and the Chimera State

Victor J. Law and Denis P. Dowling

1 Introduction

The aim of this review paper is twofold. Firstly, bring real-world magnetron mode
experiments and theory to the attention of the chaos community. This paper aims to
achieve this by reviewing the development of the magnetron family (i.e. split-anode,
cavity magnetron, rising-sun magnetron and relativistic magnetron) in terms of orig-
inal work (therefore the most valuable documents, including patent applications).
Secondly is to identify when and where synchronous and asynchronous modes and
mode completion is present. It is hoped that this reviewwill encourage chaos research
into the magnetron family and the use of magnetron mode theory in natural coupled
resonator systems.

By way of background electronic valve coupled ring oscillators that utilise multi-
ple metal enclosures (high Q-factor resonators) in the form of the cavity-magnetron
[1, 2] and the klystron [3, 4] were first developed in the late 1930s to replace the elec-
trical (and patent blocking) limitations of the triode valve. Improvement in the cavity-
magnetron in the form the coaxial cavity-magnetron [5] and the relativistic cavity-
magnetron [6] came in the mid 1950s and 1970s, respectively. More recently the
combination of quantum and microwave theory have produced compact microwave
ring oscillators for consideration for stabilising atomic frequency standards intended
for satellite navigation systems [7, 8]. In the development of all these oscillators,
the reduction in mode competition (inherent output frequency instability) has been
a major technical problem that had to be overcome. These instabilities where first
described as having chaotic behaviour when phase locking two relativistic cavity-
magnetrons was first reported using a length of waveguide [6]. More recently natural
and real-world chemical and biological coupled ring resonator systems have been
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studied using chaotic theory with particular focus on chimera states that contain the
coexistence of synchronous (coherent) and asynchronous (incoherent) states in cou-
pled ring oscillators [9, 10]. Given the long established mathematical constructs that
describe modes within the magnetron family it is reasonable to consider that modes
and chimera states have a converging origin, although they come from different sci-
entific fields of study. This view point has been exemplified based on two papers pre-
sented at the 10th CHAOS2017 International Conference, Barcelona, Spain. The two
contrasting papers are: Electronic valve instabilities and modes [11] and Chimera:
do they exist in the real world where the second paper highlighted a presentation on
coupled oscillators networks [12].

To address the objective of reviewing the development of the magnetron family it
is first useful to follow the chronological order of events leading to their development.
This may be found in the many academic peer-reviewed papers, books, conferences
proceedings and patents. However, when it comes to a concise understanding of
the driving force that lies behind the reduction, or even the eradication, of mode
competition there is a porosity of record. In the case of patents the requirement is
to lay out the innovation for all to see and how the patent relates to prior art. In
this area Leconte was one of the first to survey more than 2000 magnetron patents
application between the period of 1920 and 1942. Although mode competition was
outside the scope of the work, the survey did successfully reveal both the historical
evolution of the magnetron and the economic war pursued by rival international
broadcasting industries involved in the manufacture of magnetrons [13]. For this
reason US patent office publications are used alongside the academic publication
resources. Using this approach it is hoped to eliminate the cloak of secrecy that
surrounds themagnetron development during the SecondWorldWar (WWII) period.
For example, due to military imperative (secrecy) the US patent office records reveal
that Boot and Raddle’s US patent was published in February 1951, some years 10
after the first US filing date in August 1941 [2].

The challenge in writing such a review is that word conventions change with
time and place and scientific field of endeavour. For example; the word convention
used to describe mode production and competition has changed with time, that is in
the early years words favourable and unfavourable are prevalent in the literature and
thenmoved on to support and unsupported as themechanism ofmode production and
competition becameclear. The cavity-magnetronhas also beenhistorically associated
with the acronym RADAR (Radio Detection And Ranging) which was coined in
1940 by the U.S. Navy for public reference [14]. The term radar has since entered
English and other languages as a common noun. Prior to this the terminology used to
describe for radar was varied; such as ‘object detection and location’ in Europe and
‘searchlight’ in Japan: both of which are in text when referring to development in
Europe and Japan. For more information regarding the terminology used see papers
within: The first international workshop on Cross-field devices [15] and CAVMAG
2010 [16].

The paper is structured as follows. Section 2 sets out the need for a high fre-
quency oscillator, Sect. 3 follows the development of the magnetron family through
to the cavity-magnetron with particular focus on lumped element equivalent electri-
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cal model (lumped element-EEM), mode component, mode degeneracy and mode
jumping. Section 4 describes the international political and military involvement that
governed the international development of the magnetron. Section 5 examines the
post WWII era development of the magnetron. Section 6 looks at cavity-magnetron
spectral noise. Finally Sect. 7 provides an overall paper summary.

2 Why Build a Magnetron

It can be argued that the magnetron has its origins in de Forest’s 1907 audion tube
patent [17] that was bitterly contested by Fleming who developed the thermionic
diode valve [18], the patent [19] of which was subsequently bought by Marconi. The
issuing litigation lasted some 10 years when it was compounded by Armstrong’s
work on de Forests audion tube (which later becomes known as the triode electronic
vacuum tube) [20]. From an academic point of view reference [20] was republished
in 1997 where both de Forest and Armstrong exchanged correspondence with the
editor who had the final say [21]. By the mid1920s Appleton showed that the triode
was capable of producing sufficient power levels at short wireless wavelength useful
for investigating the ionosphere, for which he received the Noble prise in 1947 [22].

To prevent potential litigation problems, Governments and industrial companies
around the world began research programs to overcome de Forest’s patent. The initial
and logical outcomewas not to attempt tomake an amplifier, but simply to replace the
convolutedproblemofgrid electrodewith amagneticfield to control current flowwith
the aim to produce space-charge [23] oscillations travelling through the E×B field,
where B is the flux density of the magnetic field. The following paragraphs provide
a summary of the development of magnetron family and the modes of oscillation
encountered along the way.

3 The Magnetron Family

3.1 Retarding-Field Triode

The German scientists Barkhausen and Kurz were the first to utilise the electron
transit-time effect, in a triode valve, to velocity modulation a signal with the grid
at a positive potential relative to both the cathode and the anode [24]. Under these
conditions electrons emitted from the cathode are accelerated towards the positive
grid, where most pass between the grid wires and approach the anode where they
are retarded back to grid and cathode. This electron dance continues back and forth
through the grid until one by one they strike the grid wires. Hence the valve became
called the “retarding-field triode”, or “positive-grid oscillator”. They found that their
simple oscillator could operate in the frequency region of 1.7 GHz (17.5 cm) but with
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little useful power output. However, finding a constructive use of the three character-
istic effects of the retarding-field triode namely; velocity modulation, bunching and
power transfer from the beam to the circuit would be found later in the magnetron
and klystron valve.

3.2 Diode Magnetron

The Swiss-German physicist Heinrich Greinacher was one of the first to use a cylin-
drically anode coaxially aligned to an inner cathode with a magnetic field superim-
posed parallel to the electrodes by a coil outside the glass envelope. Due to poor
vacuum the attempt was only partially successful, but he did provided the first basic
concept of electron precessionwithin theE×Bfield. In 1921Hull at theGeneral Elec-
tric Company published his work on his coaxial diode valve [25]; a cross-sectional
schematic of his magnetron (without the external coil) is shown in Fig. 1a.

Hull demonstrated that the strength of the superimposed magnetic field acts as
a relay on current flow through the valve by restricting the electrons reaching the
anode beyond a critical magnetic field strength. The mode of oscillation operation is
one determined by the electron-transit-time between the cathode and anode. When
operating just below the critical magnetic flux density, powers of 8 kW at 30 kHz
were achieved. This regeneration frequency (f r) follows the relation f r � constant/B,
where B is the correct flux density of themagnetic field to enable electrons to arrive at
the anode and the constant is related to the electron transit-time between the cathode
and anode and back. Hull called his tube the magnetron: the word is the synthesis of
the words magnet and electron thereby the magnetron became part of the kenotron
family of valves. By 1924, the Czech physicist Žáček [26] developed a magnetron
with a solid cylindrical anode that generated frequencies up to 1 GHz (3 cm).

Fig. 1 Cross-section schematic of the anode segmentation development. Hull’s single anode (a),
2 segment anode (b), 4 segment anode (c). The external coils are not shown for clarity
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3.3 Split-Anode Magnetron

In 1924 Habann [27] produced the first split-anode magnetron. His valve had a
central cathode wire surrounded by two plane or semi-cylindrical anodes, within an
evacuated glass envelope, see Fig. 1b.Again a superimposedmagnetic field parallel to
the cylindrical arrangement was provided by an external coil. Using this arrangement
a regenerative action of 100 MHz was obtained.

After graduate study in Germany, England, and America, Japan’s best-known
radio researcher in the 1920s–30s was Professor H. Yagi at Tohoku University. Dur-
ing this period (1927–29) one of his early doctoral students K. Okabe made a break-
through into the centimetre wavelength using 2 and 4-segment split-anode design
(Fig. 1b, c) [28]. In both cases the principlemode of operationwas found to be related
to the electron-transit-time and impulse or amplified negative resistance in which the
frequency is equal to the natural frequency of the circuit.

A few years later, Posthumus famously derived a working mathematical formula
that related the f r to an even number of segments pairs, n, where n � modal value
of 1, or valves � 2, 4, 6, so setting the scene for future development [29]. Even
though the space-charge effect is neglected the approximate expression (1) shows
this relationship,

fr ≈ 4πnVa

r2a B
(1)

where Va and ra are the anode voltage and radius, also. Therefore for given constant
Va/B, increasing the number of segment pairs also increases f r : which is in-line with
experimental observation. The approximation term in Eq. (1) is used as magnetrons
do not generally exhibit a zero-bandwidth power spectrum [30] but contains a phase
noise component of approximately 100 sMHz centred on f r . This is particularly true
of the split-anodedesignwhere the anode segments are punchedoutwith precisionbut
with poor dimensional imprecision when fabricated together to form the composite
split anode.

Crucially the opposing anode segments need to be operated at different RF poten-
tials (V + V1 and V − V1, respectively, see Fig. 1c) so that the weak electric field
surrounding the gaps can deflect the electrons as they sweep past these openings
they induce a high-frequency resonant. This is because, as the electrons transit the
gap some will be retarded and spiral out towards the most negative potential anode
segment, while those electrons that gain energy are accelerated towards the cathode.
In other words electrons reaching the anode regenerate the oscillation, but electrons
retuning to the cathode do not. Moreover the retuning elections must move though
the space-charge region, thereby temporarily disrupting the space-charge current
before bombarding the tungsten-cathode and heating it further thus contributing to
the split-anode magnetron’s spectral bandwidth output.

The split-anode electron precession process is well exemplified in Gill and Brit-
ton’s 1936 paper: the action of a split-anode magnetron [31] and the follow up
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Fig. 2 A reconstruction of Heller’s simplified scheme of two flat anode segments and cathode. The
fine blue line represent the equipotential field; the solid red line is the path of single SNR electron
and; the dash red line is the path of the ANR electrons

discussion [32]. In these two papers the contributors (Messrs. Awender, Tombs,
Megaw, Gill and Britton) discussed alternative theories that may account for the
static negative resistance effect and an amplified negative resistance which involves
a resonance; where the oscillation period is equal to the time of precession from the
neighbourhood of one anode gap to the next.

To differentiate between static negative resistance (SNR) and the amplified neg-
ative resistance (ANR) effect, Heller’s flat plate split-anode picture may be used,
which introduces no changes in the principle of their action [33]. Heller’s picture is
reconstructed in Fig. 2. Here the left-hand anode has a higher potential then right-
hand anode, as may be seen from the course of the equipotential lines. Its potential
is not however so great that an electron leaving the cathode with zero velocity could
reach the plate. When an electron approaches the gap it enters a region where the
equipotential lines are bent and lie closer to the anode. The electron will follow this
course, and therefore reaches the anode with lower potential although it began its
journey under the anode with a higher potential.

Electrons that just fail to reach the anode segment proceed to the next gap where
they receive a second impulse thus gaining a second chance to reach the lower poten-
tial segment. This process repeats until the electron finally arrives at the segment with
the lower potential. This repeating process is essentially the resonance, or amplified,
type of negative resistance.

Hans Hollmann (Telefunken, Germany) developed the split-anode design further
and filed an associated patent clam in 1936. The claim pertained to the rotational
space-charge mode that operates at a higher frequency, but low efficiency, when
compared to the amplified negative resistance mode. The claim (see Fig. 3) employs
a plurality of sheet metal anode segments connected together using a further set of
sheets metal straps of equal length to the segment length and where each straps forms
a longitude cavity with a crescent shaped cross-section aligned along the segment
gaps. The US patent claim was issued in 1938 [34]. Even though the anode was of
a composite construction using welding or rivet technique and was still within an
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Fig. 3 Cross-sectional view
of Hollmann’s composite
anode magnetron. Magnetic
field removed for clarity

evacuated glass envelope that included the possibility of water cooling the design
does foresee the multiple-cavity magnetron.

By the outbreak of WWII split-anode magnetrons where in full production in
one form or another for shortwave radio use and in decimetre wavelength detection
and location of aircraft systems that include supplementary visual-observation posts,
such as the Home Chain defence system in Britain.

3.4 Block Anode Magnetron

In this section the transition from the split-anode to a block-anode magnetron is
described. Thesemagnetrons form a gradual transition in design thinking from one of
a composite anode structure to the anode that is constructed using a singlemetal anode
that has a plurality of cavities whistle still surrounded by glass vacuum envelope.

In the USA, Samuel at Bell Telephone Laboratories Inc., was the first (1934) to
patent (US. 2,063,342) a magnetron containing 2 and 4 cavities machined out of a
single anode block which was contained within a glass envelope with an external
magnetic field applied [35]. The patent provides 5 schematics of 2 and 4 cavities
surrounding a central cathode. A detail description of the electrical model of the
components is given, however, no details of frequency and power measurements
where given.Megaw later noted in his 1946paper the electrondischargedevice lacked
a satisfactory method of coupling the resonators to the load [36]. Moreover, there is
little evident of Bell Telephone Laboratories developing their in-house knowledge.
Indeed the company published 8 disclaimers to their original 18 claims (Official
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Gazette March 8, 1938) and then took a different technical direction when they
patented the silicon transistor amplifier in 1948 [37].

In 1928 Ukrainian institute of Physics and Technology (UIPT) was established at
Kharkov State University (as part of the Soviet Union). In do so bringing together the
Kharkov radio-physics community who become responsible for early investigation
of the split-anode, a hollow anode with a glass envelope that allowed water cooling
of the anode to achieve output powers of 5–7 kW at a wavelength of 80 cm.When the
LaboratoryofElectromagneticOscillations laboratory (LEMO)combinedwithUIPT
to formUIPT-LEMOmost of theirworkwaspublished inGerman, so little of thework
was reviewed in America, Japan or the UK. The Zenit three-coordinate (elevation,
azimuth, and distance) aircraft detection and aiming system was a development that
went un-noticed [38] and went on to be deployed around Moscow for air defence in
1941. However with UIPT-LEMO relocation to central Asia meant that the prototype
Zenit system was not put into production.

It is also worth noting that the split-anode magnetron became of age 1935 when
Henri Gutton’s 4-segment anode was fitted with a 16 cm obstacle detector system on
the ocean liner Normandie [39, 40].

By 1939, Tsuneo Ito at Tokoku University developed the 8 segment split-anode
Tachibana (Mandarin-orange flower) which had a metal base with integrated water
coolingwithin a glass envelope [41–43]. Later, withYoji Ito, Tsuneo developed phase
opposition, or push-pull, circuit that strapped alternate segments, thus in part reducing
the phase noise. The Tachibana magnetron was further developed as the type M-3
magnetron that was contained within a glass envelope using a copper block anode
that had radiating cuts giving rise to the name ofKosumosu (cosmos), or ‘rising-sun’.
The M-3 was able to operate at approximately 10 cm with a CW power of 500 watts
and predating Boot and Randell’s prototype magnetron by some months, although
at a greatly reduced output power. In 1941 the M-3 was productionised to the M-312
magnetron, where the anode ‘rising-sun’ design employed vanes with cavities of
uniform size and operated in pulse mode at 9.9 cm with a peak power of 6.6 kW
[43].

In 1938 the technique of phase opposition, or push-pull was patented in the US by
Frizz [44] where he describes how alternate segments are inter-connected by means
of clips or connecting conductors plus the addition of an auxiliary electrode inserted
at the cathode is used to control the radio frequency current. This was followed in
April 1938 when Gutton and Berline filed a US patent where 4 claims are made
relating to phase-opposition using a double 4-split anode where each split anode is
mounted opposite to each other in such a way that their segments form a interdigital
structure. The patentwas issued in February 1939 [45] andwas similar to the Japanese
Corn-flower and lily type split-anode [41–43].
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3.5 The Leningrad Cavity Magnetron

The mid to late1930s saw an interest in magnetron research with the aim to build
robust devices that worked in the centimetre range with output powers of hun-
dreds watts CW. Alekseev and Malairov at the Nauchno-issledovatel institut-9 in
Leningrad, U.S.S.R was the first to published water cooled solid copper anode with
2 and 4-cavities, without a glass envelope, that could reach these power levels [1].
Their work stopped after this publication, possibly due to the Stalinists purges at
the time, clearly a case of published and be dammed [46]. Their paper was later
translated from Russian to English by Bensen and republished in 1944 [47].

3.6 The Birmingham Cavity Magnetron

When Boot and Randall arrived at Birmingham University to work under the direc-
tions of the Australian physicist Mark Oliphant, their initial task was to miniaturise
the Barkhausen-Kurz oscillator and to excite cavities by gas discharge. From their
1976 paper [48]Boot andRandall clearly state theywere aware of theVarian brother’s
klystron [49] and Hansen and Richtmyer’s mathematical treatment of the resonator
enclosures made suitable for the klystron [3]. We may reasonable assume they were
also aware of Hansen’s early 1938 paper on the mathematical treatment of hohlraum
type (spherical, cylindrical and prism) conducting enclosures [4]. Given the impor-
tance of these high Q-factor (30,000–50,000) conducting resonator enclosure (where
Q is defend as π times the ratio of stored energy in the enclosure to the energy loss
per cycle) there can be little doubt they applied this knowledge to the split-anode
magnetron design that produced vanishingly small powers below 10 cm that were
being constructed in: Denmark, France, Germany, Japan and the USA.Whether they
knew of the Leningrad magnetron [1] is unclear. Through their reading, the Birming-
ham team were aware of the electromagnetic properties of the Hertzian wire dipole
which resonates at electromagnetic wavelength of λ � 7.94d, where d is the length
of the loop [1, 50].

With the publication timing of the resonator enclosure papers [3, 4, 49] and the
implications of the Hertzian loop it is not surprising that Boot and Randell came
up with a 3-dimensional version of the Hertzian dipole that forms the re-entrant
cavity design, were the physical size of each resonator is fixed by the desired output
frequency. By May 1940, and some 3 months after of Hansen’s US patent (High
efficiency resonant circuit) [51], the Birmingham team made their 6-slot-hole cavity
magnetron: it was constructed with 6 holes of diameter, Dcav � 1.2 cm, within a
copper block of height, h � 4 cm. Interestedly, the holes diameter and circumference
spacing were a determined by a Colt revolver barrel that was used as a drilling jig.
The slots (width, w � 1 mm and thickness, t � 1 mm) where cut radially from the
anode inner diameter (Da � 1.2 cm) to each hole with the annular spacing between
the anode and cathode defining the interaction spacing. Hence each slotted hole
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Fig. 4 Magnetron re-entrant cavity development: aHertzian loop, b 3-dimensional Herstzian loop,
c equivalent LC lump EEM, d cross-sectional view of a N � 8 cavity magnetron and, e electromag-
netic field-lines within a cavity

approximated to an electromagnetic wavelength of 1.2 cm × 7.94 � 9.5 cm. See
Fig. 4a, b, c, d, e. The 4 cm height of the anode block, and hence cavity height, was
selected to fit the electromagnet gap size available at the time and was later found
not to be critical to the magnetron output frequency.

The French influence came from Maurice Ponte at the Compagine Génerale de
Télégrahpie Sans Fil who escaped to Briain before the fall of France. Ponte provided
the British team with the French M-16 magnetron that had a heated oxide-coated
cathode and 8-slot-hole cavity enclosed within an evacuated glass envelope giving
peak power of ~1 kW at 16 cm [36, 48, 52].

Boot and Randall believed that the oscillations within each cavity circuit were
strongly coupled together through the combined action of the axial magnetic field
and radial electric field that forced the electrons to rotate past the re-entrant gaps.
The effect being to produce a synchronised feedback electromagnetic slow-wave
structure: that is an electromagnetic wave that propagates at a velocity much smaller
when compared to that of light. Coupling the radio frequency power out of the
interaction space was provided by means of an output coupling probe, see Fig. 4d.

The removal of external tuning circuits in the Boot and Randell design is more
than compensated when you consider that a few watts of almost spurious radiation
was turned into 100 kW of well-defined signal generated by a compact practical
device. The cavity magnetron advantages can be listed as: (a) minimal copper loss
design of the single machined anode block that incorporate all the cavities provided
a less complex manufacturing process that reduces segment miss-alignment and an
improved anode surface smoothness, both of which untimely produce the high Q-
factor requirement for high energy storage within the cavities. And (b), placing the
vacuum inside the anode structure removes the need for a glass envelope. These
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advances over a short period time produced an all-nearly metal design with efficient
cooling of the anode block that allowed an increase output frequency as compared to
previously patented magnetron designs. Moreover the light-weight design enabled
centimetre radar sets to be made airborne and seaborne thus fulfilling Watson-Watt
and Wilkins memorandum: The detection and location of aircraft by radio methods
[53].

3.7 Lumped Element-EEM of Cavity Magnetron

Although monolithic structures of the anode block cannot be strictly modelled using
the lumped element-EEM, a rough estimation of the resonant frequency (f r) of the
cavities may be performed. Indeed three patents [35, 51, 54] and three journal papers
[3, 4, 49] stress that those skilled in the art of EEMs can use the lumped element
[inductance (L) and capacitance (C)] approach with a high degree of success. This
paper takes the same approach and where necessary use electromagnetic field theory
to estimate structural induced inductive and capacitive fringing effects. In addition
the EEM is tested against the Leningrad, Birmingham and GEC cavity magnetrons.

First consider the conventional parallel resonant circuit (Fig. 4c) whose basic
resonant frequency (f ) is given by the first order Eq. 2.

f � 1

2π

√
1

LC
(2)

where L is the inductance value of the individual cavity and C is the capacitance
value between each re-entrant gap. When attempting to generate an EEM of the
cavity magnetron operating in the desired π-mode, the individual inductors and
capacitors are all connected in parallel, therefore the effective inductance is L/N and
effective capacitance is NC, where N is the number of resonators. Equation 2 may
now be written using the expanded forms of L and C to produce the approximate
expression (3).

fr ∼ 1

2πr

√
Nt

ε0μ0πw
(3)

where f r is the resonant frequency of the system, N is the number of re-entrant
gaps, t and w are the thickness and width of each re-entrant gap and ε0 � 1.25 ×
10−6 F/m and μ0 � 8.85 × 10−12 H/m. Note, as the height of the cavity (h), see
Fig. 7b, appears in the numerator and denominator in the L and C formulas, these
dimensions are cancelled out making approximate expression (3) independent of h
thereby supporting the observation that cavity height is not critical to the magnetrons
resonant frequency.
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Table 1 Structural anode geometry of the Leningrad, Birmingham and the GEC E1189 (# 2 and #
12) cavity magnetrons

Magnetron Dcav (cm) Da (cm) h (cm) t × w (mm) f r /λ (GHz/cm)

Leningrad
4 cavity

0.9 0.6 2 1 × 1 ~3.3/9

6 cavity
Birmingham

1.2 1.2 4 1 × 1 ~3/9.8

6 cavity
E1189 # 2

1.2 1.2 2 2 × 2 ~3/9.8

8 cavity
E1189 # 12

1.2 1.6 2 2 × 2 ~3/9.8

A second term that contains the capacitance fringing correction (a) may, or not,
be aided depending on the fringing rejection criteria d � √

A holds true. In the
case of the cavity magnetron where the re-entrant gap is formed by two opposing
surfaces, with t and w being of similar dimension the criteria is always negative:
thus the term is employed and its value varies between 0.53 and 0.73 depending on
the cavity geometry, see in Eq. (4). In the case of the cavity magnetron re-entrant
configuration the lefts-hand-side term in the in Eq. (4) is used, thus the fringing
capacitance contributes about 50% [7, 8].

√
1

1 + 2.5 t
w

≤ a ≤
√

1

1 + t
w

(4)

The fringing inductance of the slotted cavity may be treated in a similar way.
However in this work the value of the fringing inductance (b) is extrapolated from
resonant frequency and anode geometry measures of the magnetrons. The procedure
is performed by introducing a total fringing correction coefficients α � (a . b) and
inserting this term outside of the square root sign of expression (3), see approximate
expression (5).

fr ∼ α

2πr

√
Nt

ε0μ0πw
(5)

The approximate expression (5) may now be used in meaningful way when com-
paring the anode geometry of the Leningrad, Birmingham University and GEC pro-
totypes magnetrons. Table 1 provides a structural comparison of their anodes and
measured f r values. The first feature of note is their remarkable similarity in anode
structural design and the measured operating resonant frequency. Here again the
valve of h (within the limits 20–40 mm) does not appear to influence f r .

Applying the approximate expression (3) to the four magnetrons measured values
of fr and their associated anode geometry data an estimation of α is now computed.
In all cases, to 2 decimal places, a value α is found to be 0.27, see Table 2, column 4.
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Table 2 Comparison of measured and estimated f r for the Leningrad, Birmingham and two GEC
cavity magnetrons (E1189 # 2 and # 12)

Magnetron f r /λ (GHz/cm) Equation 3 (GHz) Coeff α Coeff a Coeff b

Leningrad
4 cavity

~3.3/9 11.9 0.27 0.53 0.51

6 cavity
Birmingham

~3/9.8 11 0.27 0.53 0.51

6 cavity
E1189 # 2

~3/9.8 11 0.27 0.53 0.51

8 cavity
E1189 # 12

~3/9.8 11 0.27 0.53 0.51

The computed value of α is given in column 4

Given this and the estimation of coefficient a� 0.53 used in the extrapolated fringing
inductance valve is equal to b � 0.51 in all cases, see Table 2, column 6.

3.8 Mode

It was found that the cavity magnetron’s output changed from pulse to pulse, both
in frequency and phases due to mode jumping. The mode also varied from one
magnetron to another. Unfortunately, the difference in frequencies of the modes, or
mode separation as it is called, is not sufficient to stabilise the magnetron power
output. The term moding arises from mode competition from the mode closest in
frequency to the π-mode. In 1941 with or without the knowledge of the phase-
opposition technique [43] James Sayers took an interest in these mode jumps. He
found that due to the multiplicity of resonators used a number of modes are possible
were each mode is characterized by the mutual phase displacements between two
successive cavities. Fortunately the number of possible modes is limited by the fact
that the resonator system (N-cavity resonators and the interaction space) is a closed
system. Thus the resonant modes of an anode block containing an even number
of N-cavities is characterized either by an integer n, defined as the total electrical
phase change around the anode block measured in revolutions (N/2); or by the phase
difference (Δφ) between successive cavities. For an anode block with N cavities
these two quantities (Δφ and n) are related by the Eq. (6).

�φn � 2πn

N
(6)

For an N � 8 cavity anode block, n � 0, 1, 2, 4; where n � 0 is not used as its
electric fields do not interact with individual cavities, and thus does not determine the
mode frequency. In the special casemode n� 4, successive segments are in antiphase
(that is they have equal and opposite potential, �φ � π). This mode is automatically
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Fig. 5 Cross-sectional schematic views of a double strapped N� 8 cavity magnetron: a the double
strap system, b sectional view of xx showing outer strap (1) connected to segment and inner strap
(2) not connected: c sectional view of yy showing outer strap (1) not connected to segment and
inner strap (2) connected

selected as it does not suffer from degeneracy thus the mode frequency determines
the electromagnetic field pattern uniquely. It also follows that for the mode n � 4,
one spoke revolution around anode block equates to N/2 RF oscillations. To provide
sufficient separation and hence selection and stabilization between the neighbouring
modes (N /2 ± 1) Sayers developed the double ring strapping system where the first
ring connects the even numbered segments and the second ring connects the odd
numbered segments (Fig. 5a) so fixing the phase difference between the segments to
a value ofπ (180°). This procedure of making two coupled oscillator systems that are
connected through the phase delay of the slow-wave structure within the interaction
space is now called “π strapping”.

An additional feature of the double π-strap is that the wavelength of the π-mode
is increased without significantly affecting the other modes. It thought that the effect
arises through the following manner. In the mid-plane of each strapped segment
the magnitude of the voltage and phase is the same as the strap whereas for the
unstrapped segment parallel capacitance is added to the capacitance of the re-entrant
gap thus increasing the wavelength of the system, see cross-sectional view xx in
Fig. 5b. For the other modes, the individual strap capacitances are not all in phase
with one another and therefore do not contribute so much to the system capacitance.
Figure 5c shows the reversal of strap connection at cross-section yy.

Now consider the initial magnetron start-up period which last approximately 3 s.
Firstly under a constant magnetic field parallel to the axis of the cathode the radial
electric field from the applied dc potential grows to produce an increasingE×B field.
In this time period emitted electrons from the cathode move away from the cathode
surface to become part of a space-charge within the interaction space thus the spatial-
temporal arrival of the electron at the anode segments alters greatly. Under these
conditions mode competition between both ring oscillator systems are generated and
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destroyed until the stable π-mode spoked wheel is formed (3 spokes for 6 cavities
and 4 spokes for 8 cavities) with the electrons densely packed (bunched) at the
interface between the tips of the spokes and the anode segments. At re-entrant gaps
the electrons are slowed down and pass their energy on to the radio frequency field
leading to the next anode segment becoming loaded a little more negatively, so
producing a rotation of the spoked wheel. However, unlike the split-anode design,
the phase focusing effect enables the transferred energy to be passed on to the cavities
and enforce the cavity microwave oscillations This synchronisation of the tangential
speed of the space-charge spokes with the phase velocity of the slow-wave structure
is generally known as the Buneman–Hartree resonance condition.

3.8.1 Mode Components

Douglas R. Hartree’s contributed significantly to the theory of atomic structure and
the operation of the magnetron. However, in the case of the magnetron mode of
operation he did not publish in journals, but did write extensive technical reports
for the British government during WWII [55]. To some degree this has obscured his
contribution. Here we lay out his contribution in terms of Hartree voltage and the
Hartree component, or harmonic. Firstly, Hartree was one of the first to consider what
has become known as the Hartree voltage: the lowest voltage at which oscillation
begin (provided at the same time that B is large), so that the undistorted space-charge
does not extend to the anode. Secondly,mode selection and rejection (n ��N /2),where
he theorised that oscillations in a given mode takes place when electrons within the
rotating space-charge couples to the slow-wave structure via a harmonic of one of the
resonant frequencies within the closed slow-wave structure. The Hartree component
or harmonic (γ) may be represented by Eq. (7).

γ � n + mN (7)

wherem is a whole number and, n and N have already been defined above. Although
the number of components is large, only values of γ for ± m up to 2 are observed
due to the drop-off in intensity of these components is proportional to (cathode
radius/anode radius). The operating modes are designated using the nomenclature
γ /n/N . It is convenient to visualise the electron configuration as γ spokes. Thus theπ -
mode in an 8-cavitymagnetron, when excited through its fundamental, is represented
by the symbol 4/4/8, see Fig. 6. In the case of the n � 3 mode when excited by its
fundamental the designation is 3/3/8, and if the n � 3 mode is excited through the
y � −5 component, the designation is 5/3/8. (N.B. a modern interpretation and use
of the Hartree harmonic may be found in resonant drive circuit for plasma jets [56]).

Aligned with Hartree’s harmonic is that the space-charge spokes contain strong
shear forces that drive diocotron instabilities close the cathode in the magnetron
start-up period. See the annotation (diocotron shear interface) in Fig. 6. The view
of different radially spaced electron cloud layers having increasingly higher rotation
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Fig. 6 Cross-sectional
schematic view of N � 8
cavity magnetron with the
space-charge wheel rotating
about the cathode. The
magnetic field is going into
the page

velocities as the spokes reach the re-entrant cavities and therefore allowing the layers
to pursue, or chase, each other has become known as the diocotron mode [57–59].

3.8.2 Mode Degeneracy

Within the circular symmetry of the non-strapped anode interaction space mode
degeneracy occurs due to waves traveling in opposite direction. The modes are des-
ignated by their mode number N/2 ± 1, 2 etc. The non-degenerate N/2 π-mode
and the 0-mode (at infinite wavelength) are not included in this class of mode. For
example, the N/2 − 1 mode travels in the opposite direction to the N/2 + 1 mode but
has the same non-sinusoidal radio frequency field pattern as the original travelling
wave at any given moment in time. In reality the symmetry of the interaction space
is perturbed by the output probe, and by imperfections in the machining of the anode
block, so making these modes less favourable in the start-up period. The degenerate
modes also haves a role in mode skip (where the magnetron does not fire on every
pulse) and, mode shift (where the mode of operation changes during the pulse).

3.8.3 Mode Jumping

The requirement of adequate separation between the desired mode and any other
interferingmode is fundamental to themagnetron operational design. From the above
the descriptions it can be seen that the interaction space has an ensemble of modes
that can contaminant and compete with each other. For the interaction space design



Magnetron Modes and the Chimera State 51

to automatically select the desired π-mode and reject others it is desirable that there
is equal bandwidth separation between the π-mode and interfering modes, in con-
junction with a lower threshold voltage for the π-mode as compared to interfering
modes: giving little or no chance of unwanted modes to compete with the π-mode.

Theπ-strapping techniques goes someway to removemode skipping and jumping
at the 10 cm wavelength, but the technique was found to be difficult to achieve in
magnetrons operating at wavelengths below 3 cm. The strapping limitation is mainly
due to difficulties in manufacture and the inductance of the straps. However, by
representing the magnetron cavities by a lumped-element EEM it was found that the
rising-sun anode structure, consisting of alternate deep and shallow cavities, led to
adequate separation of π-mode frequency from other unwanted modes.

4 The Military Imperative

The invasion of Manchuria by Japan 1931 that was forerunner of the WWII meant
that research into high frequency oscillators and their incorporation in the radio
frequency equipment that could detect both aircraft and ships became the subject
of many secret military projects; The information of which could not be divulged
through patents or journal papers. It was only after secession of the pacific war that
journal papers and magazines openly reported on the magnetron development and
their contribution to radio searchlight and location systems. This section therefore
relies heavy on the articles of: Megaw (1946, [36]), the report prepared by United
State Army Air forces; survey of Japanese radar capabilities published in 1946, [60,
61]), Döring (1992, [62]), and Nakajima (1992, [42]). In view of this imperative, it is
the aim of this section to provide a picture of military use and advances made during
the period of 1936 to 1945.

4.1 Tizard Mission

Arguable the Tizard mission (British Technical and Scientific Mission to the United
States of America and Chanda) changed the technological course of WWII in the
late summer of 1940; the aim of the mission being to obtain industrial resources
and exploit the military potential British research and development up to that point.
Tizard’s “brief case” therefore held the sealed-off magnetron type E1189, series
N.12 developed by Megaw at GEC, enigma code breaking information and all what
Britain knew about building an atomic bomb. As regards to the said magnetron, the
American’s scientists X-rayed it and found 8 cavities whereas the accompanying
drawings stated 6 cavities thus giving rise to suspicions. Megaw was telegraphed
and after a short time was able to remember that the first 10 magnetrons had 6
cavities and number 12 had 8 cavities, immediately the drawings were updated and a
developing international incidentwas avoided. For this extraordinarymission,Britain
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would receive financial and industrial help for their war effort. By September, the
Massachusetts Institute of Technology had set up a secret laboratory; by November,
the cavity magnetron was in mass production; and by early 1941, portable airborne
radar had been developed and fitted to both American and British planes with pulsed
transmitter powers of ~100 kW at 3 cm in 1940 to ~2 MW at 10 cm by 1944. The
radar sets could also be fitted with the American klystron amplifier as they would be
more likely to be destroyed in the event of a plane crash [50].

To place the success of the Tizard mission into context, it was not until the night of
the 2nd to 3rd of February 1943 that a high power 10 cm cavitymagnetron and a reflex
klystron fell out of the sky into Germany’s hands. This came about when a Stirling
bomber was shot down south east of Rotterdamwith its secret ground scanning radar
equipment virtually undamaged. Germany made an almost exact copy which they
named the “Rotterdam Great” [62]. Inevitably similar occurrences happened in the
pacific in 1945 when B29 bombers were shot down [60, 61]. Fortunately for the
Allies the capture of the centimetre radar secret came too late to have any significant
effect on the outcome of the war.

4.2 The Tripartite Pact

During the period between the two World Wars, wireless technology in Japanese
universities, especially the Imperial (government-financed) universities, was on a
par with that in Europe and the USA. Academic publications encouraged along
with academic and industrial exchange to western universities were encouraged.
The Japanese invasion of Manchuria in, 1931 and the 1940 Tripartite Pact with Nazi
Germany and Fascist Italy naturally meant that wireless research and oscillators such
as the magnetron become sensitive areas of military research. It is also fair to say
that the top military leaders sincerely felt that the application of radio in detection
and ranging was as defensive tool that did not suit their offense thinking. In addition
when it came to transferring scientific research into military use problems arose due
to rivalry and jealousy between the Imperial Army and Navy; though the Pact did
encouraged strong links with universities and institutions.

By late 1940 technical missions to visit Germany and Italy were arranged with the
aim to exchange developments in military technology and information. The visits to
Germany resulted in Japan receiving theH2S ground scanning radar plans and details
of a pulse-modulatedmicrowave radio range finder set. The visit of the assistant naval
attaché to Berlin to Italy, after the British aerial torpedo attack on the Italian Navy at
anchor in the harbour of Taranto 1940 is likely to have influenced japans attack on
Pearl Harbour. At the time Italy’s naval and coastal radar capabilities relied on RCA
and Philips triodes [63].

Japan also had early aircraft searchlight systems based on the continuous wave
Doppler affect. This came about when in 1938 a team of engineers from the Research
Office of the Nippon Electric Company (NEC) were forming high-frequency trans-
mitter coverage tests. They found that rapid fading of their signal occurred whenever
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an aircraft passed over the line between the transmitter and receiver. The disadvan-
tage, however, was that it did not give a definite location. Masatsugu Kobayashi, the
team manager, recognized that this was due to the beat-frequency interference of the
direct signal and the Doppler-shifted signal reflected from the aircraft and suggested
to the Army Science Research Institute that this phenomenon might be the same
that Yagi and Okabe had found earlier in 1936. Thus by 1940 the Imperial Army’s
Bi-static Doppler Interference Detector was placed in service. The system operated
between 4.0 and 7.5 MHz and involved a screen of widely spaced stations that could
detect the presence of an aircraft at distances up to approximate 500 km.

5 Post WWII Magnetron Development and Use

Towards the latter part ofWWIImagnetron research in theAmerica,Britain and Japan
turned to magnetrons that could generation millimetre wavelengths for greater target
definition, higher microwave powers and non-radar use. These three research goals
required the slot-hole cavity magnetron to be developed further. These developments
are listed below.

5.1 Cavity-Magnetron

With regard to increasing the cavity magnetron turning range the 1949 US patent
was given to Percy L. Spencer (Raytheon) [64]. This was followed a by two more
US patents in 1951: Randell and Boot (English Electric Valve Company Limited)
cavity-magnetron [2]; Sayers’s (English Electric Valve Company Limited) double
ring strapping system [65]. These were shortly followed by Okress and Reed (West-
inghouse Electric Corporation) US patent relating to the echelon strapping system
[66]. That modified the Sayers’s strapping system in such a way to reduce high volt-
age arcing, hence power loss, between straps and non-directly connected segments,
two further significant patents were published in 1952: Dodds (Radio Corporation
of America) relating to magnetron cavity pre-turning within the manufacturing stage
[67], and Flowers (Western Electric Company) automatic magnetron aging circuit
[68].

5.2 Broader Applications of Cavity-Magnetron

By the late 1940s the Raytheon Company transferred their military magnetron tech-
nology tomedical therapeutic purposes (diathermy) and commercial foodpreparation
using their Radarange oven [69]. When the Raytheon basic patent expired in 1967
new low-cost table-top microwave ovens became available that contained the pack-
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aged magnetron (magnetron with integrated magnet). Later (1975) the first planar
magnetron patent for sputtering of materials was issued to Corbani (Sloan Technol-
ogy Corporation) [70] and, possibly the first electron cyclotron resonator plasma
etcher patented was issued to Suzuki et al. at Hitachi in 1978 [71]. Further to these
patents the first low-cost microwave plasma etcher patent was issued to Aaron Rib-
ner in 1989 [72]: examples of use being plasma etching of contaminated ceramics
[73]. These new use of the magnetron marked a radical change from launching kW
microwave radiation to only measuring voltage fields of a few 10 s mV m−1 for
radar purposes [53] to one of 400–900 W microwave heating and plasma treatment
of materials.

5.3 Rising-Sun Cavity-Magnetron

The collection and handover of the Japan’s magnetron and radar technology to the
Allies at the end of WWII [60, 61] spurred-on USA researchers to investigate the
vane-type magnetron, with the aim of improving both frequency range and output
power without the need for strapping. Within three years a triplet of papers appeared
in the Journal of Applied Physics. The results where explained byMillman andNord-
sieck [74] using the lump element-EEM and an electromagnetic field theory model
by [75, 76]. The three papers have proved to be important in our understanding of how
the π-mode is automatically selected and other modes rejected. To aid the discus-
sion, Fig. 7a shows a cross-section view of the 24 GHz (1.25 cm) 18-vane rising-sun
cavity-magnetron in question. The word segment is dropped for the preferred term
vane as this describes the configuration more accurately. In addition [75] referred to
the Japanese type M312 rising-sun cavity-magnetron [41–43] as a possible design
source of their alternating cavity shaped magnetron.

For this rising-sun configuration the ratio of the resonator depths of the two differ-
ent cavities ri � 1.6–2.0 was found to be entirely satisfactory for π-mode operation.

Figure 7b shows an elementary section of the lumped element-EEM of an 18-
vane alternating cavity rising-sun anode block. In this figure the left hand L1 − C1

resonator represents the smaller cavity and the right hand side L2 − C2 resonator
represents the larger cavity. Capacitive susceptance (Cs) to a common point (cathode)
is also present. Each resonator also has an associated wavelength, λ1 and λ2 that are
set by the resonant circuit L and C values, where r1 is the ratio of the resonator depth
of the two different cavities, and in the value of σ , the ratio of the cathode diameter to
the anode diameter. To exemplify these conditions the following remarks are taken
from Ref. [74, 75].

(a) When r1 is too small, competition from the n� [(N/2)− 1]mode interferes with
stable π -mode operation of the magnetrons.

(b) When r1 is too large, mode competition from members of the long wavelength
multiplet having n ≥ 3 prevents satisfactory operation.
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Fig. 7 Diagram of the 18-vane rising-sun cavity-magnetron: a cross-sectional view of the anode
and cathode block: b elementary circuit (containing two cavities) used in the elementary LC lumped
circuit. The circuit continues around and closes on itself using N/2 elements to complete the model

(c) The range of satisfactory values of r1 decreases as the number of resonators is
increased. For magnetrons in the voltage range under discussion, satisfactory
open-cavity vane type magnetrons with N > 26 can probably not be designed.

Given these conditions, r1 is usually set between 1.5 and 1.7. The following lump
element-EEM assumptions can now be made and are. Firstly, if the values of Cs are
small they can be neglected to give an approximate picture of the modes. Secondly,
when the valves of Cs � 0, the circuit enables three resonant modes to be generated:
these are when either of the two parallel impedances (L1 − C1, or L2 − C2) is at
infinite, or when the two parallel impedances are opposite and equal. Thirdly, if a
small amount of coupling between the resonators is introduced the first and second
resonance are split into two closely spaced resonances each, while the third is not
spit. These three resonant groups correspond to the low wavelength (high frequency)
group n � 5, 6, 7, 8, the long wavelength (low frequency) group n � 1, 2, 3, 4 and
the π-mode n � 9.

Figure 8 shows the computedmode spectrum for n�1–9of the 18-vane alternating
cavity rising-sun anode. For comparative purpose the computed mode spectrum of
an equivalent 18-vane double-strapped anode is also shown. In this figure the system
free space wavelength is plotted on the vertical axis and n is plotted on the horizontal
axis with all the data points are taken from ([74], Fig. 1b, c). Here it can be seen that
the mode spectrum forms a number of groups equal to the number of different sizes
of resonators used. In the case of the rising-sun anode two groups are formed due to
the two different sizes of resonators used: where the large separation or gap in the
mode spectrum is formed near n � ½ (N /2 − 1). Whereas for the 18-vane double
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Fig. 8 Typical mode frequency spectrum associated with an 18-vane double-strapped anode (open
squares) and the alternating cavity rising-sun anode (open circles). The black circle and square
represents the π-mode in each case

strapped anode no large separation is presents as there is only one set of equally sized
resonators.

To concluded this section it is noted that in Robert Moats Ph.D. thesis (Interac-
tion of modes in a magnetron, oscillators, MIT, 1950 [77]) treated the rising-sun
magnetron as triode oscillator with two degrees of freedom’ that is, two modes in
the resonant circuit. In doing so Moats based his work on B. van de Pol’s non-linear
theory (on oscillation hysteresis in a triode generator with two degrees of freedom)
[78].

5.4 Coaxial Cavity-Magnetron

The removal of unwanted modes at high frequencies without strapping or alternating
cavities was first realized by Collier and Feinstein in 1950s [5]. Their US 2,854,603
patent (1958) used a pair of coupled cavity resonators that have a common con-
necting wall. The outer torroidal coaxial cavity is designed as a high-Q resonator
that oscillates in the TE011 and that is set at different frequency outside of the turn-
ing frequency range of the inner anode-cathode cavity resonator. Electromagnetic
coupling between the two cavities systems is achieved through alternating pairs of
anode vanes by slots extending through the common wall and where the anode vanes
of the inner cavity are approximately one quarter-wave long in frequency range of
the TE011 oscillations of the coaxial cavity. With the inner cavity operating in the
π-mode every other cavity is in phase with the coaxial cavity (Fig. 9).

Because the outer torroidal coaxial cavity has a high Q-factor, electromagnetic
coupling to the slow-wave structure within the interaction region stabilizes the π-
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Fig. 9 Cross-sectional view of a 12-vane coaxial cavity-magnetron. The magnetic field is going
into the page

mode and dampens all other modes. This action both increases the magnetron output
frequency stability and reduces spectral noise when compared to the original cavity-
magnetron. The design also allows rapid (millisecond) auxiliary tuning via movable
ferrite [79] and dielectric strips and paddles [80] without introducing mechanical
vibration.All of these factorsmake the coaxial cavity-magnetron the preferred choice
for modern civil ground and airborne radar.

5.5 Relativistic Cavity-Magnetron

This section looks at the A6-type 6-vane relativistic magnetron where the term ‘rel-
ativistic’ refers to the use of high-voltage electron beams with velocities close to
the speed light. Thus the fundamental difference between the relativistic magnetron
and the cavity magnetron is the application of diode voltages >360 kV and explo-
sive emission from the cathode by removing the current limitations connected with
cathode emission and space charge. To achieve these conditions the current limiting
π-strapping is removed and thermionic emission cathode replaced with a smooth
wall field-emission cathode. The anode is formed as a slow-wave structure that con-
tains 6 circumferentially spaced radially oriented cavities towards the cathode with
output coupling probe replaced by a waveguide with its iris positioned in one of the
cavities to enable radial extraction of the radiation energy out of the magnetron.With
these changes high-energy density physics experiments can be realised. Again the
interaction space is evacuated to better than of 10−7 Torr. In 1976 Bekefi and Orze-
chowaski published their relativistic magnetron that produced microwaves power of
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Table 3 Diode aspect ratio (σ) and mode for the Leningrad, Birmingham and E1189 # 2 and # 12
plus the 6-vane A6 relativistic magnetron

Magnetron σ Mode References

Leningrad
4 cavity

2 π [1, 85]

6 cavity
Birmingham

0.3 π [35]

6 cavity
E1189 # 2

0.3 π [35]

8 cavity
E1189 # 12

0.23 π [35]

Relativistic magnetron <1 π [82]

Relativistic magnetron 2.98 π and 2π [82, 83]

Relativistic magnetron 4.7 π, 2π and 5p/3 [83]

1.7 GW at 3 GHz in 30 a nanoseconds pulse [81], this was followed by their US
patent published in 1980 [82].

The process of mode competition in relativistic magnetrons have been experimen-
tally studied by Palevsky et al. [83] and simulated by Chen et al. [84] as a function of
diode aspect ratio σ � rc/(ra − rc) by varying the cathode and anode radii rc and ra.
Their studies revealed that magnetrons with large anode-cathode gaps (small aspect
ratio, σ < 1) favour oscillation in the π-mode (n � 3, Δφ � π) for a wide range of
diode voltages and magnetic field values, whereas magnetrons with a small anode-
cathode gap (large aspect ratio, σ > 1) tend to oscillate in the π-mode and 2π-mode
(n � 6, Δφ � 2π), with the 2π-mode performing better than the π-mode. Moreover
at very small anode-cathode gaps (σ � 4.7) the 5π/3-mode can be excited where the
three modes approach 2.3, 4.55 and 5 GHz, respectively. With this information, it
is now worth comparing the A6 6-vane relativistic magnetron with the cavity mag-
netron examined in Sect. 3. It is worth noting that both Palevsky et al. [83] and Chen
et al. [84] attributed these their largely to the radial and azimuthal components of the
electric field for the π-mode, 2π-mode and 5π/3-mode near the cathode are compa-
rable in magnitude so leading to strong coupling of these modes to the circulating
charge-space.

Table 3 details the diode aspect ratio and mode selection for each cavity mag-
netron. Column 4 in Table 3 lists the references where the physical cavity details
and identified modes can be found. Note the Leningrad magnetron results are taken
from particle-in-cell simulations by Andreev and Hendricks [85]. The rising-sun
magnetron is not included in this comparison as the dual cavity aspect ratio (r)
determines mode selection and competition see Sect. 5.3. The tabulated data reveals
that the Leningrad, Birmingham and the two GEC magnetrons have σ values of 2
or less and only exhibit the π-mode under normal operation. It is only when the
anode-cathode gap becomes small with σ > 2 mode competition is present.
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Phase locking, rather than frequency locking, of two or more relativistic mag-
netrons to extended power level between 1 and 3 GW was demonstrated by Benford
et al. in 1989 [6]. Here the two magnetrons were connected together using short
length of waveguide that has a variable plunger for phase matching. This work is
of direct interest to researchers in the field of chaos as the author’s state: ‘there is a
limitation on the connector length to avoid chaos’.

6 Frequency Stability and Noise

So far the paper has focused on the magnetron’s mode of operation which has been
shown to depend upon the space-charge spoke interaction with the periodic struc-
ture of the anode. In this section the magnetrons ageing process, frequency pulling
and cathode noise is now considered. To consider these processes the single charge
space-charge assumption is modified to one of low density plasma where ions are
formed fromgas ions impurities whichwas first reported in experimental and theoret-
ical detail by Langmuir in 1913 [22]. To understand spectral instabilities externally
coupling at the electrical input and output of the magnetron oscillator needs also to
be considered.

6.1 Cavity-Magnetron Aging

Like other electronic valves the performance of the magnetron can suffer due to gas
impurity related instabilities which can cause arcing between the magnetron cathode
and anode [11]. The resulting build-up of contaminant deposit is illustrated Fig. 10
and [86].

Arcing can have a number of origins, including: (1) incomplete evacuation of
the valve during the manufacturing stage (2) virtual leaks around the electrodes,
and (3) outgassing of material used in the construction of the valve. To prevent this
malfunction the process of magnetron aging is used to ‘clean up’ the valve at the end
of the manufacturing stage or performed as a prescheduled preventive maintenance
procedure to prolong the life of the valve in service. The aging process takes the form
of a ‘bake-out’ procedure using a sequence of increasing higher anode voltage steps,
where each step initiates arcing and is maintain until the arcing ceases. This process
is repeated until magnetron reaches its full specified operating voltage without arcing
[68].
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Fig. 10 Cut-away of a
process aged (7000 h)
Hitachi magnetron showing
build-up of black deposit on
the internal surface of the
probe-antenna [86]

6.2 Frequency Pulling

Simply put, frequency pulling occurs when an external electromagnetic force acts
upon the magnetron probe-antenna that is built into a waveguide structure and where
the force, once passed the probe-antenna, alters the resonator- interaction coupling.
Hence the magnetrons output frequency and power vary concurrently [87–89]. Nor-
mally the pulling figure is defined in terms of voltage standing wave ratio (VSWR)
and is measured as the maximum change in output frequency that results when
an external, fixed amplitude mismatch, located in the output waveguide, is moved
through a distance of one half wavelengths relative to the magnetron. [N.B. the mag-
netron pushing is a very different effect and is due to modulation of the magnetron
power supply].

6.3 Cavity-Magnetron Cathode Noise

In order to address cathode noise the work of the Welch and Dow [90] and Stewart
[91] is considered. They postulated that each spoke of the electromagnetic slow-wave
structure is composed of electrons randomly emitted from the heated oxide-coated
cathode. Under these conditions the velocity of the electrons will be random and
consequently be subjected to random fluctuations about a mean position. In the
time domain these fluctuations are measured as a spoke jitter (or in the frequency
domain measured as phase noise). This jitter or phase noise may be considered to
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be made up of both thermal noise as well as noise originating from the ionization
of atoms of the cathode oxide coating by electron back-bombardment. Both of these
processes may be amplified by the continuous interchange of energy between the dc
field of the space-charge region and the electromagnetic field that is present within
the interaction space. Thus spoke jitter (phase noise) leads to modulation of the
magnetron’s oscillator frequency.

Since the work of Welch and Stewart [90, 91] it has been found that the jitter
(phase noise) bandwidth that can be significantly reduced by a number of means:
three of which are presented here. Firstly, the spectral noise is a reduced using a
cavity magnetron which is operated by a dc stabilized power supply and whose
filament current is turned-off when the oscillations start [92]. Azimuthally varying
axial magnetic fields may also be used to reduce spectral noise at all anode currents,
but is particularly significant at low current near the start-oscillation condition [93].
Thirdly, metal shielding of the HV input side of the cathode can also reduce spectral
noise [94].

7 Summary

This work has reviewed the magnetron electrical engineering and physics develop-
ment; from the Barkhausen-Kurz oscillator to the relativistic cavity-magnetron using
both US patent publications and peer-reviewed papers. As regards to the US patent
office publications it is found to be a rich source of scientific and commercial detail. It
is argued that the Barkheausenn-Kurz oscillator and the Hall magnetron provided lit-
tle advantage over the triode valve in terms of increased frequency and output power.
Between the 1920s and 1940s the magnetron design changed from one of open com-
posite framed electrodes to one of solid enclosure resonator cavities circumferentially
spaced around a cylindrical interaction space with an electron emitting cathode at its
centre, thus allowing a wide range of frequencies to be supported within the coupled
structure. However the development had very different design solutions depending
upon the country of origin where the work was performed. The Sino-Japan, war
(1931–1945), the war in the pacific (1941–1945) and in Europe (1939–1945) all
had the specific influences that ultimately shaped today’s magnetron designs (rising-
sun cavity-magnetron, coaxial cavity-magnetron, relativistic cavity-magnetron and
packaged cavity-magnetron).

It is concluded from this review that while military applications shaped mag-
netron development in the early part of the 20th century, as the technology devel-
oped the applications became increasingly focused on civilian use. Applications
included medical therapeutic purposes (diathermy), commercial food preparation,
and microwave heating as well as for its use in the plasma treatment of materials.

From a lumped-element EEM view point, and given the correct E×B condi-
tions, both the frequency and output power of the cavity-magnetron is determined by
the physical dimension of the resonator enclosures together with the reactive effect
of any perturbations to the inductive or capacitive portion of the EEM. The coax-
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ial cavity-magnetron differs in that the torroidal outer coaxial cavity controls the
electromagnetic coupling into the slow-wave structure of the anode-cathode cavity.
Excluding the coaxial cavity-magnetron, three π-mode controlling techniques have
been described: strapping, alternating cavity structure within the rising-sun cavity-
magnetron and diode aspect ratio in the relativistic cavity-magnetron. When each
of these three techniques are properly applied the π-mode is automatically synchro-
nises to the space-charge spoke pattern within interaction space, so removing mode
competition.

A further aim of this work is to identify when and where mode competition is
present within the magnetron family. This review has highlighted four (but not lim-
ited to) possible candidatures. The first and second candidates relate to the cavity-
magnetron and are: the start-up period where mode competition, due to the rapidly
growing space-charge, ismost evident; the second is the ageing process that is charac-
terised by internal surface erosion-carbonisation and gas impurity release. Candidate
three is found to the sun-rise cavity-magnetron. In this case the N/2 – 1 competes
with the stable π-mode the due resonator ratio (r1) is <1.6 and, while for r1 values
>2 mode competition also occurs. The fourth candidate of interest is found in the
A6 6-vane relativistic cavity-magnetron which can operate in the π-mode, 2π-mode
and 5π/3-mode when the diode aspect ratio (σ) is > 2.

It has been shown that mode mathematical models have been developed for the
cavity-magnetron family in the 1940–2010s The models include the Hartree compo-
nent, or harmonic, and magnetron aging process. It is therefore reasonable to postu-
late that mode competition models may have a role in chaos theory when applied to
natural and man-made coupled resonator networks.
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The Fokker-Planck Equation
and the First Exit Time Problem.
A Fractional Second Order
Approximation

Christos H. Skiadas and Charilaos Skiadas

1 The Stochastic Model

Following an approach in stochastic analysis we assume that the state S = S(t) of
an individual part of a stochastic system at time t follows a stochastic process of the
form:

dS(t) = h(t)dt + σ(t)dW (t), (1)

where h(t) is the drift coefficient or the infinitesimal mean and σ(t) the variance
parameter or the infinitesimal variance or the diffusion coefficient and W (t) the
standard Wiener process. The latter is a good alternative to reproduce a stochastic
process of Brownian motion type that is a random process to account for the random
changes of our system. Accordingly an equation of the last type can model the time
course of a complex system as are several complicated machines or automata. The
last equation is immediately integrable provided we have selected appropriate initial
conditions as S(t = 0) = S(0).

S(t) = S(0) +
∫ t

0
h(s)ds +

∫ s

0
σ(s)dW (s), (2)

This equation form gives a large number of stochastic paths for the health state
S(t) of the individual parts of the system. However, it should be noted that these
paths following a random process with drift are artificial realizations that can not
calculated in the real life for a specific part of the system else we have a perfect
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inspection system estimating the state of the particles in real time; that is impossible
so far. However, we can findmethods to estimate special characteristics of this system
of stochastic paths provided by the last equation as is the summation of infinitesimal
mean that is the mean value H(t) of the systems state over time given by

H(t) = S(0) +
∫ t

0
h(s)ds, (3)

Even so it is not feasible to calculate H(t) immediately. Fortunately there are sev-
eral theoretical approaches to find the time development of H(t) from the advances
in physics, mathematics and applied mathematics, and probability and statistics. The
first approach is by observing that as H(t) expresses the State of a large ensemble
of the system’s elements, it should be a declining function of time or better age.

2 General Solution

To find the appropriate form of H(t) a series of delicate mathematical calculations
are needed. We preferred estimates leading to closed form solutions thus providing
important and easy applied tools for scientists from several fields and those non famil-
iar with stochastic theory methodology and practice. The important steps leading to
the final forms for estimating H(t) are given in the following.

The first step is the formulation of the transition probability density function
p(S, t), that is a function expressing the probability for the health state S of an
individual tomove from one point at time t to the next. This is achieved by calculating
a Chapman-Kolmogorov equation for the discrete case. However, we use here the
continuous alternative of this equation that is the following Fokker-Planck equation:

∂p(S, t)

∂t
= −h(t)

∂[p(S, t)]
∂S

+ 1

2
[σ(t)]2 ∂2[p(S, t)]

∂S2
, (4)

The related information can be found in Adriaan Fokker doctoral dissertation in
Leiden University in 1913 [1] and in his paper 1914 [2]. Fokker in his disertation
presents the related equation in connection with Max Planck theory in a specific
chapter. Latter on Max Plack presented the Fokker-Planck equation in his paper in
1917 [4].

2.1 Fractional Forms of the Fokker-Planck Equation

The main fractional forms of the Fokker-Planck equation are the following

∂p(S, t)

∂t
= −h(t)

∂[p(S, t)]
∂S

+ 1

2
[σ(t)]2 ∂α[p(S, t)]

∂Sα
, (5)

where α is the fractional parameter
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In several problems in physics and engineering it is preferred to set D = 1
2σ

2 to
obtain the form

∂p(S, t)

∂t
= −h(t)

∂[p(S, t)]
∂S

+ D
∂a[p(S, t)]

∂Sa
, (6)

The selection of the diffusion parameter D became famous from the Einstein
paper in a case of diffusion problem with zero drift with a non-fractional (classical)
equation of the form

∂p(S, t)

∂t
= D

∂2[p(S, t)]
∂S2

, (7)

The other fractional form of the Fokker-Planck equation refers to a fractional
derivative with respect to time

∂γ p(S, t)

∂γ t
= −h(t)

∂[p(S, t)]
∂S

+ 1

2
[σ(t)]2 ∂[p(S, t)]

∂S
, (8)

where γ is the fractional parameter.
The literature for the solution of these fractional Fokker-Planck equations is

already quite large (see Sun et al. [12]). A significant part of this literature is included
in the chapters of this book along with important applications.

2.2 Solution of the Fokker-Planck Equation

The solution of the classical Fokker-Planck partial differential equation is highly
influenced by the boundary conditions selected. Here this partial differential equation
for S and t is solved for the following appropriate boundary conditions (see Janssen
and Skiadas [3])

p(S(t), t0; S0, t0) = δ(S(t) − S0), (9)

∂p[S(t), t0; S0, t]
∂S(t)

→ 0 as S(t) → ±∞ (10)

For the solution we use the method of characteristic functions. The characteristic
function φ(S, t) is introduced by the following equation

φ(S, t) =
∫ +∞

−∞
p(S, t; S0, t0) exp(isS)ds, (11)
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Integrating by parts and using the Fokker-Plank equation we arrive at

∂φ

∂t
= ish(t)φ − 1

2
[σ(t)]2s2φ, (12)

which with the initial conditions proposed

φ(s, t0) = exp(isS0), (13)

is solved providing the following expression for φ

φ(s, t0) = exp

[
is

[
S0 +

∫ t

t0

h(t ′)dt ′
]

− 1

2
s2

∫ t

t0

[
σ(t ′)

]2
dt ′

]
, (14)

This is the characteristic function of a Gaussian with mean
[
S0 +

∫ t

t0

h(t ′)dt ′
]

, (15)

and variance [
σ(t ′)

]2
dt ′, (16)

Considering Eq. 3 and t0 = 0 the solution is

p(t) = 1

[2π ∫ t
0 [σ(s)]2ds]1/2 exp

[
− [H(t)]2
2

∫ t
0 [σ(s)]2ds

]
, (17)

3 Specific Solution

When σ(t) = σ a simple presentation of the transition probability density function
during time is given by:

p(t) = 1

σ
√
2π t

exp

[
−[H(t)]2

2σ 2t

]
, (18)

Having estimated the transition probability density function for the continuous
process we can find the first exit time probability density function for the process
reaching a barrier.
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4 A First Approximation Form

Just after the introduction of the Fokker-Planck equation in 1913 it was possi-
ble to estimate the first exit or hitting time of a stochastic process from a barrier.
Schrödinger [5] and Smoluchowsky [11] solved the problem publishing two inde-
pendent papers in the same journal issue in 1915. The drift should be linear of the
form

H(t) = l − bt, (19)

where l and b are parameters. Then the resulting distribution function g(t) is known
as the Inverse Gaussian of the form

g(t) = l

t
p(t) = l

t

1

σ
√
2π t

exp

[
−[l − bt)]2

2σ 2t

]
, (20)

Figure 1 (left) illustrates the Inverse Gaussian model. The linear drift is presented
by a red heavy line whereas the stochastic paths appear as light lines. The confidence
intervals are also presented by dashed lines. The inverse Gaussian Distribution is
illustrated in Fig. 1 (right) aswell as a fit curve to data (Data from theCareyMedflies).

The Inverse Gaussian as expressed in the last equation is a convenient form to
find a generalization for a smooth nonlinear drift H(t). From Fig. 2 we consider a
tangent approximation in the point M(H, t) of the drift curve H(t).

l(t) = H(t) − t H ′(t), (21)

Note that the minus sign (−) accounts for the negative slope of the derivative
H ′(t). Now the only needed is to replace l by l(t) and l − bt by H(t) in the formula
of the Inverse Gaussian to obtain to tangent or first approximation for the first exit
time density of a general smooth drift.
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g(t) = |H − t H ′|
t

p(t), (22)

By using the estimated p(t) we arrive at the following form for the first exit time
probability density function

g(t) = |H − t H ′|
σ
√
2π t3

exp

[
−[H(t)]2

2σ 2t

]
, (23)

The last formula is coming fromafirst approximation of the first exit time densities
with good results in relatively simpler cases (see Skiadas and Skiadas [6–8]).

5 A Second Order Fractional Correction

Clearly the first order approximation error is smaller as the the drift H(t) approaches
linearity. For the other cases a second order approximation is needed by means of
taking into account the second order derivative or even higher order derivatives.
However, the second order derivative approach could be a good approximation pro-
vided that a fraction of this derivative is selected to account of the smaller or larger
curvature of the drift H(t). The resulting formula is the following

g(t) = 1

σ
√
2π t

[ |H − t H ′|
t

+ k
t2

2

H ′′

|H − t H ′|
]
exp

[
−[H(t)]2

2σ 2t

]
, (24)

where the parameter k expresses the fraction of the second derivative needed. We
take the quadratic term of a Taylor series expansion for H(t) that is
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H(t) = H(0) + t H ′ + t2

2
H ′′ + · · · , (25)

Evenmore the first order approximation |H − t H ′| is used as a normalising factor
for the quadratic term.

5.1 An Interesting Application

We can arrive in a very interesting formula by selecting the following form for H(t):

H(t) = l − (bt)c, (26)

where l, b, c are parameters
In our applications H(t) expresses the health state of a population and thus the

first exit time distribution g(t) refers to the age of the population by means of 0 ≤ t .
Accordingly the g(t) is a half distribution and the resulting first and second order
approximations are:

g(t) = 2|l + (c − 1)(bt)c|
σ
√
2π t3

exp

[
−[l − (bt)c]2

2σ 2t

]
, (27)

g(t) = 2

σ
√
2π t

[ |l + (c − 1)(bt)c|
t

+ kt2c(c − 1)bct (c−2)

2|l + (c − 1)(bt)c|
]
exp

[
−[l − (bt)c]2

2σ 2t

]
,

(28)
As for fitting this formula and the previous simpler forms to data sets it is not pos-

sible to estimate the parameters of the model along with σ , two options are selected;
that is to set σ = 1 and estimate l, b, c or to set l = 1 and estimate b, c, σ . The latter
is very important when stochastic simulations are needed. It is also useful for appli-
cations on health state estimates. It was selected from Weitz and Fraser [13] for the
application in Medflies and from Skiadas and Skiadas [6–10] for many applications.

The applications are done in actual data (mortality) sets or on a logarithmic trans-
formation of the data providing better information for the first period of the human
lifespan. The first order approximation (see Fig. 3) fail to cover the first period of
the lifespan where strongly nonlinear forms appear. Instead, the fractional approxi-
mations with the second derivative (see Fig. 4) provide very good fitting to the data
sets.
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Fig. 3 (Left) First exit time distribution (data and fit curves for USA mortality data, male 2010)
and (right) respective application with a logarithmic form of the data. First order approximation

Fig. 4 (Left) First exit time distribution (data and fit curves for USA mortality data, male 2010)
and (right) respective application with a logarithmic form of the data. Second order approximation

6 Summary and Conclusions

We have present a first exit time theory of a stochastic process. The general model is
analytically derived according to the first exit time or hitting time theory for a stochas-
tic process crossing a barrier. The derivation lines follow the transition probability
densities from the Fokker-Planck equation. Thenwe find the probability density form
and the first and second approximation of the first exit time densities. For the first
approximation we obtain a generalization of the Inverse Gaussian whereas for the
second approximation we apply a fractional approach to the second derivative by
introducing a parameter k. We thus introduce another approach to apply a fractional
theory. Instead to apply the fractional derivative theory to the Fokker-Plank equa-
tion we have solved a classical Fokker-Plank equation and then we have selected a
fractional approach when introducing the second order derivative.
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Anomalous Diffusion by the Fractional
Fokker-Planck Equation and Lévy Stable
Processes

Johan Anderson and Sara Moradi

1 Introduction

Finding a proper kinetic description of dynamical systems with chaotic behaviour
is one of the main problems in classical physics. Over the past two decades it has
become obvious that much more complex behaviour than standard diffusion can
occur in dynamicalHamiltonian chaotic systems. In principle, the orbits in dynamical
systems are always theoretically predictable since they arise as solutions to simple
system of equations such as Newton’s equations however these orbits are sensitive
to initial conditions. From the macroscopic point of view, the rapid mixing of orbits
has been used as a motivation for assumptions of randomness of the motion, and the
random walk models.

During the last century, classical random walk or Brownian motion was stud-
ied extensively and used as a paradigm to understand and describing the diffusion
phenomenon. In a Brownian motion the mean value vanishes whereas the second
moment or variance grows linearly with time 〈δx2〉 = 2Dt . However, many phenom-
ena exhibit anomalous diffusion where variance grows non-linearly in time such that
〈δx2〉 = 2Dtα . There is no mechanism that inherently constrains limδx,δt→0

δx2

δt to be
finite or non-zero. Inmore general terms, there are two limits of interestwhere the first
is super-diffusion α > 1 and the second is sub-diffusion with α < 1. Such strange
kinetics [1–6] may be generated by accelerated or sticky motions along the trajectory
of the random walk [7]. Super-diffusivity can occur as a result of variation in the
step length of the motion which gives rise to long-range correlations in the dynamics
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generated by the presence of anomalously large particle displacements connecting
otherwise physically disjoint domains. Sub-diffusive properties has been studied in
many different contexts where transport is often inhibited by sticky motion. Among
sub-diffusive phenomena are that of holes in amorphous semiconductors where a
waiting time distribution with long tails was introduced [8] and the sub-diffusive
processes within a single protein molecule described by generalized Langevin equa-
tion with fractional Gaussian noise [9]. Turbulence and related anomalous diffusion
phenomena have been observed in a wide variety of complex systems such as high
energy plasmas, semiconductors, glassy materials, nanopores, biological cells, and
epidemic proliferation.

In these situations, thus, kinetic descriptions which arise as a consequence of
averaging over the well-known Gaussian and Poissonian statistics (for diffusion
in space and temporal measures, respectively) seem to fall short in describing the
apparent randomness of dynamical chaotic systems [1]. This is due to the restrictive
assumptions of locality in space and time, and lack of long-range correlations that is
the basis of these descriptions.

In magnetised plasmas, it is commonly accepted that turbulence is the primary
cause of anomalous (i.e. elevated compared to collisional) transport. It has been
recognized that the nature of the anomalous transport processes is dominated by a
significant ballistic or non-local componentwhere a diffusive description is improper.
Super-diffusive properties are often foundwithα > 1 such as the thermal and particle
flux in the gradient region of the magnetically confined plasmas or in the Scrape-
Off Layer (SOL) where the transport is dominated by coherent structures [10–21]
and inherently non-local effects [22–28]. Moreover, analysis of measurements with
Langmuir probes at different fusion devices of density and potential fluctuations
have provided evidence to support the idea that these fluctuations are distributed
according to Lévy statistics. This was illustrated for example in [29], where PDFs of
the turbulence induced fluxes at the edge ofW7-AS stellarator were shown to exhibit
power law characteristics in contrast to exponential decay expected from Gaussian
statistics. Furthermore, the experimental evidence of the wave-number spectrum
characterized by power laws over a wide range of wave-numbers can be directly
linked to the values ofLévy indexα of the PDFs of the underlying turbulent processes.
Lévy statistics describing fractal processes (Lévy index α where 0 < α < 2) lie at
the heart of complex processes such as anomalous diffusion. Lévy statistics can be
generated by random processes that are scale-invariant. This means that a trajectory
will possess many scales, but no one scale will be characteristic and dominate the
process. Geometrically this implies the fractal property that a trajectory, viewed at
different resolutions, will look self-similar.

Understanding anomalous transport in magnetically confined plasmas is an out-
standing issue in controlled fusion research. A satisfactorily understanding of the
non-local features as well as the non-Gaussian probability distribution functions
(PDFs) found in experimental measurements of particle and heat fluxes is still lack-
ing [15, 16]. Fractional kinetics has been put forward for building a more physically
relevant kinetic description for such dynamics.
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Fractional kinetics is a powerful framework in describing anomalous transport
processes exibiting Lévy statistics. It is able to reproduce key aspects of anomalous
transport including the non-Gaussian self-similar nature of the PDFs of particle dis-
placement, and the anomalous scaling of the moments. Also, the integro-differential
nature of the fractional derivative operators allows the description of spatiotemporal
nonlocal transport processes. In particular, in fractional diffusion, the local Fourier-
Fick’s law is replaced by an integral operator in which the flux at a given point in
space depends globally on the spatial distribution of the transported scalar, and on the
time history of the transport process. Using fractional generalizations of the Liouville
equation, kinetic descriptions have been developed previously [30–32]. It has been
shown that the chaotic dynamics can be described by using the Fokker-Planck (Fp)
equation with coordinate fractional derivatives as a possible tool for the description
of anomalous diffusion [33]. Previous papers on plasma transport have used models
including a fractional derivatives on phenomenological premises [13, 34].

The goal of this work is to give an overview and new insights into the recent devel-
opments in modelling of the anomalous transport of charged particles in magnetised
plasmas. Different approaches to the problem from solvingMonte Carlo simulations
of charged particles in the presence of α-stable Lévy fluctuations in an external mag-
netic field and linear friction, and numerical solution of Fractional Fokker-Planck
Equation (FFPE) were developed [18–20, 34–36].

2 Modelling of Anomalous Diffusion by the Langevin
Equation

One kinetic description in plasma physics is given by the Vlasov equation (a gener-
alization of the Boltzmann equation, where the forces include not only the external
ones but also the mean electromagnetic fields due to the plasma itself) that requires a
6 dimensional phase space (3 for positions and 3 for the velocities). Plasma dynamics
is often dominated by collective motion which using the Vlasov description is effec-
tively impossible to directly compute due to the rapid Larmor gyrations. Instead, an
alternative formulation reducing the dimensionality of the problem is used, which
describes the motion of the guiding centres of these rapidly rotating plasma particles
in a 5D phase space [21]. This formulation, called gyro-kinetic theory, is commonly
used in simulating plasma turbulence. The gyro-kinetic formulation however strongly
rests on the assumption that the motion of charged particles following the magnetic
field lines is local and therefore averaging over the Larmor gyration possible. In
practice, the applicability of gyro-averaged models may be limited due to non-local
and intermittent properties of the plasma induced by the collective effects of elec-
tromagnetic forces between the charged particles.

It is thus pertinent to explore the non-locality or fractal properties of charged
plasma dynamics. Here the statistics of charged particle motion in the presence of
α-stable Lévy fluctuations in a external magnetic field and linear friction is discussed
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in the framework of numerical Monte Carlo simulations. The Lévy noise was intro-
duced to model the effect of non-Gaussian, intermittent electrostatic fluctuations.
The statistical properties of the velocity moments and energy for various values of
the Lévy index α were investigated as well as the role of Lévy fluctuations on the
statistics of the particles’ Larmor radii in order to examine potential limitations of
gyro-averaging. Previously inRef. [37] numericalworkwere limited to 2 dimensions,
this is now expanded further by utilizing 3-dimensional simulations in a cylindrical
magnetic field, where the statistics of the spatial displacements and Larmor radius are
studied. The work is limited by neglecting memory effects and the Lévy noise was
taken as white or delta correlated in time. One other aspect is that these simulations
can be used to corroborate analytical models of fractional dynamics, which we will
discuss later in this work.

We consider the motion of charged particles in a 3-dimensional magnetic field in
a cylindrical domain in the presence of linear friction modelling collisional Coulomb
drag and a stochastic electric field according to the Langevin equations

dr
dt

= v, (1)

dv
dt

= qs
ms

v × B − νv + qs
ms

E . (2)

Here qs and ms are the charge and mass of the particle species s, ν is the friction
parameter and E is a 3-dimensional, homogeneous, isotropic turbulent electric field
modelled as an stationary, uncorrelated stochastic process without memory follow-
ing an α-stable distribution, f (α, β, σ, η), with characteristic exponent 0 < α ≤ 2,
skewness β = 0, variance σ = 1/

√
2, and mean η = 0. Here, we use the definition

of f (α, β, σ, η) as described in Refs. [38–40].
A periodic straight cylindrical domain with period L = 2πR0 is considered, with

R0 being the major radius, and we use cylindrical coordinates (r, θ, z). The magnetic
field is a helical field of the form,

B(r) = Bθ (r) êθ + Bz êz . (3)

A constant magnetic field in z-direction, Bz = B0, is assumed. The shear of the
helical magnetic field, i.e. the dependence of the azimuthal rotation of the field as
function of the radius, is determined by the q-profile, q(r) = r Bz/(R0Bθ ), where

Bθ (r) = B(r/λ)

1 + (r/λ)2
, (4)

for which the q profile is

q(r) = q0

(
1 + r2

λ2

)
. (5)

In terms of the flux variable,
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ψ = r2

2R2
0

, (6)

q is a linear function ofψ . The numerical integration of Eqs. (1) and (2) is performed
using a Runge-Kutta 4th order scheme (RK4) over the interval [0, T ]. The time
step for the RK4 integration is defined by partitioning the interval [0, T ] into N
subintervals of width δ = T/N > 0,

0 = τ0 < τ1 < · · · < τi < τN = T, (7)

with the initial conditions r0, and v0. We compute ri and vi for the subintervals with
the time step of dt = δ/n, and at every δ, we include the cumulative integral of the
stochastic process using

dri = vi dt (8)

dvi =
[
qs
ms

vi × B − νvi

]
dt + W (9)

where
W = qs

ms
χ

∑
δ

(dt)(1/α)E . (10)

Here, using spherical coordinates, random samples in the Eρ radial direction are
generated with the α-stable random generator developed in Refs. [38–40], and two
uniformly distributed angles θ and φ between [0, 2π ] are used. In Cartesian coordi-
nates the components of the electric field are Ex = Eρ sin θ cosφ, Ey = Eρ sin θ sin φ,
and Ez = Eρ cos θ . Np = 104 particles are considered, and the simulation time is
T = 500/τc where τc = 2π/�c and �c = |qs |B0/ms is the gyration frequency. We
explore the dependence of the particle motion on the index α of the Lévy fluctua-
tions and the parameter ε = χ/ν where χ is the amplitude of the fluctuations and ν

is the damping coefficient. The convergence in probability of Lévy driven stochastic
differential Eqs. 1 and 2 have been discussed in [41] where a criteria is established.

Figures 1 and 2 show samples of the computed particle orbits and their respective
velocities for α = 2 and 1.5. As seen in the Fig. 1 (left), for the Gaussian process,
the orbits tightly follow the helical field lines and their motion homogeneously cover
the 3-d velocity space as seen in Fig. 2 (right). However, in the case of Lévy process
with α = 1.5, the gyro orbits deviate significantly from the magnetic field lines, and
outlier events are observed to result in a significant increase in the velocity space
covered by the particle’s motion, as shown in Fig. 2 (right).

In general it is noted that the PDFs change from an exponential decay to a power
law decay when the stochastic process is changed from a Gaussian to a Lévy process.
This is an indication of induced non-local effects stemming from large fluctuations.
Most often turbulence in plasmas exhibit a very large range of spatio-temporal scales.
This leads to a formidable computational challenge, it is customary to use reduced
descriptions based on spatial and/or temporal averaging of degrees of freedom that
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Fig. 1 (Left) Samples of computed particle orbits normalised to ρL (0) and (right) their respective
velocity for a Gaussian stochastic process, α = 2, and ε = 100

Fig. 2 (Left) Samples of computed particle orbits normalised to ρL (0) and (right) their respective
velocity for a Lévy stochastic process, with α = 1.5, and ε = 100

evolve on small spatial scales and/or fast time scales compared to the macroscopic
scales of interest. One common example is the extensively used gyro-kinetic models,
where it is assumed that ρL/L � 1 where ρL is the Larmor radius and L is the
tokamak minor radius or a characteristic density gradient scale length. However, it
is important to keep in mind that in a turbulent plasma where the fluctuations follow
a Lévy process also the Larmor radius cannot be deterministcally determined it thus
is a statistical quantity, 〈ρL〉, (where 〈·〉 denotes ensemble average). On the other
hand, in a plasma in Maxwellian equilibrium the PDF of Larmor radii is sharply
peaked around the thermal Larmor radius. However, for plasmas where the PDF
exhibits slowly decaying tails with a large amount of extreme events (i.e., particles
with anomalously large Larmor radii) the situation is much less trivial. Especially, in
the case of algebraic decaying PDFs, where statistical moments might not exists or
converge it might not be possible to obtain a characteristic length scale of the process.
The results obtained by these simulations indicate that when turbulent electrostatic
fluctuations exhibit non-Gaussian Lévy statistics, gyro-averaging and guiding centre
approximationsmaynot be fully justified and full particle orbit effects should be taken
into account. Investigations of scale free stochastic processes has attracted significant
interest in plasma physics in particular but also in applied and basic sciences, see
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for example Refs. [42, 43] and references therein. For more details and in-depth
discussions see Ref. [20].

3 Modelling Anomalous Transport

In the following we will discuss a fractional Fokker-Planck (FPP) approach to model
anomalous processes, it thus pertinent to start with the theory of Brownian motion
where an equation of motion for a colloidal particle in a background medium is in
the form of a Langevin equation [44]

dv
dt

= −νv + A(t) (11)

Here, the Gaussian random noise, A(t), represents the influence of the background
medium by dynamical friction and a fluctuating part. The Gaussian white noise
assumption is usually imposed in order to obtain a Maxwellian velocity distribution
describing the equilibrium of the Brownian particle. This relation is discussed in Ref.
[45] in relation to the connection between the Gaussian central limit theorem and
classical Boltzmann-Gibbs statistics. However, the Gaussian central limit theorem is
not unique and a generalization was done by Lévy [46], Khintchine [45] and Seshadri
[47] using long tailed distributions.

The FFP can be derived in several ways where the most straightforward way is
to consider long jumps, i.e., Lévy flights, which therefore allows for long tails in the
equilibrium PDFs. We introduced the Lévy statistics into the Langevin equation thus
yielding a FFP description.We follow the approach used by Fogedby [48, 49], Barkai
[50] and Moradi [18, 19] where a FFPE with only a fractional velocity derivative in
the presence of a constant external force is obtained as

∂F

∂t
+ v

∂F

∂r
+ F

m

∂F

∂v
= ν

∂

∂v
(vF) + D

∂αF

∂|v|α , (12)

with 0 ≤ α ≤ 2. Here, the term ∂αF
∂|v|α is the fractional Riesz derivative. The diffusion

coefficient, D, is related to the damping term ν, according to a generalized Einstein
relation [50]

D = 2α−1Tαν

�(1 + α)mα−1
. (13)

Here, Tα is a generalized temperature, and the force F represents the Lorentz force
acting on the particles with mass m, and �(1 + α) is the Euler gamma function.

Note that for Lévy type distribution functions, higher moments will diverge.
Thus, it is of interest to define convergent statistical measures of the underly-
ing process. We will employ the generalized q-moments or q-expectations as
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〈v p〉q = ∫
dvF(v)qv p/

∫
dvF(v)q . The q-expectation can be a convergent moment

of the distribution function although the regular moments diverges. This also gives
us the opportunity to define a pseudo-energy that is always convergent.

In order to analytically investigate the effects of the fractional derivative on the
diffusion we consider the force-less homogeneous one dimensional Fokker-Planck
equation of the form,

∂F

∂t
= ν

∂

∂v
(vF) + D

∂α

∂|v|α F. (14)

The solution is found by Fourier transforming and treating the fractional derivative
in the same manner as in Ref. [63] we find,

∂ F̂

∂t
= −νk

∂

∂k
F̂ − D|k|α F̂ . (15)

The stationary PDF is now readily obtained by integration and an inverse Fourier
transform,

F̂(k) = F0 exp

(
− D

να
|k|α

)
, (16)

F(v) = F0

2π
Re

{∫ ∞

−∞
dk exp (− D

να
|k|α + ikv)

}
. (17)

Due to the fractal form of the inverse Fourier transform analytical solutions of
the PDF for the general case is difficult to obtain as closed functions, except in
particular cases of α = 1.0 and α = 2 yielding a Lorentz distribution and a Gaussian
distribution, respectively. Note, that it is possible to express the solutions in Fox’s
H-functions. Moreover it is interesting that Eq. (17) is equivalent to what was found
in Ref. [32]. The PDF generated by Eq. (15) is,

F(v) = N

(1 + β(q − 1)v2)1/(q−1)
. (18)

Here N is normalization factor. Furthermore, it is found that β is not representative
of an inverse temperature of the system due to its non-equilibrium nature. In the rest
of this paper we will study the solutions to the Eq. (17) in more detail.

In investigations of the anomalous character of transport a useful tool is the non-
extensive statistical mechanics which provides distribution functions intermediate to
that of Gaussians and Lévy distributions adjustable by a continuous real parameter q
[51–53]. The parameter q describes the degree of non-extensivity in the system. Non-
extensive statistical mechanics has a solid theoretical basis for analysing complex
systems out of equilibrium where the total entropy is not equal to the sum of the
entropies from each subsystem. However, it must be noted that Tsallis q-statistics
is not unique. For systems comprised of independent or parts interacting through
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short-range forces theBoltzmann-Gibb statisticalmechanics is sufficient however for
systems exhibiting fractal structure or long range correlations this approach becomes
unwarranted. Tsallis statistics is now widely applied e.g. to solar and space plasmas
such as the heliosphere magnetic field and the solar wind [54–56]. The main topic of
this paper is to evaluate the statistical properties in termsofTsallis statistics dependent
of the fractional index (α) in Eq. (17). We will start by numerically computing the
PDFs with α as our free parameter. Subsequently, in order to statistically evaluate the
numerically found PDFs in the fractal model we will determine the q-expectation
and the Tsallis non-extensive entropy. Note that the regular statistical moments of
the PDFs will not converge unless the PDFs are considered to have a finite compact
support. Thus, we will now focus on solving Eq. (17) numerically, by computing
the inverse Fourier transform and compare the found PDFs to previously derived
analytical solutions Eq. (18).

In Fig. 3, the numerically found PDFs are shown (log-linearly) for α = 1.00
(magenta line), α = 1.25 (green line), α = 1.50 (red line), α = 1.75 (blue line) and
α = 2.00 (black line). Here, in this figure the diffusion coefficient over the dissipation
is kept constant D/ν = 1.0.

We note as the parameter α decreases, the normalized fourth moment (Kurtosis
= m4/m2

2 = the ratio of the fourth moment divided by the square of the standard
deviation) of the symmetric PDF increases rapidly where PDFs become more and
more peaked with elevated tails. Note that the distribution varies smoothly as α

- parameter is decreased from a Gaussian distribution with α = 2.0 down to the
Lorentz distribution with α = 1.0.

It has been shown, inRef. [57], that using generalized statisticalmechanics yielded
PDFs that are of Cauchy-Lorentz form,

Fig. 3 The F(v) as a
function of the velocity v for
α = 2.00 (black line),
α = 1.75 (blue line),
α = 1.50 (red line),
α = 1.25 (green line) and
α = 1.00 (magenta line)
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F(v) = a

(1 + b(q − 1)v2)1/(q−1)
. (19)

We note that this type of PDF exhibit power law tails that are significantly elevated
compared to Gaussian or exponential tails. It is worthy noting that the precise ana-
lytical relation between the fractality index α and the non-extensivity parameter q is
not entirely clear due to the non-uniqueness of the q-statistics. One possibility is the
formal relation between the fractality index α and the non-extensivity q proposed by
[57] as:

α = 3 − q

q − 1
. (20)

It can easily be shown that F(v) ∝ v−(α+1) as v → ∞which is fulfilled byEq. 20. On
the other hand in the limit of small v the exponential factor can be approximated as
follows eikv = 1 + ikv − 1

2k
2v2 + · · · , keeping only the even powers in the integral

due to the symmetry, we find:

F(v) ≈ F0

π

1

α

[(
D

αν

)−1/α

�

(
1

α

)
−

(
D

αν

)−3/α

�(
3

α
)
v2

2! + · · ·
]

. (21)

Here � is the gamma function. Note that the last expansion in Eq. 21 approximates
a Gaussian distribution function for small v for Eq. (20).

To further investigate the suitability of Eq. (20) with q = 9/5 for α = 3/2 where
we find good agreement over several orders of magnitude between the proposed
analytically derived PDFs based on Eq. (20) and the numerically computed PDFs for
the values used.Note that similar agreement is found for all values of 0.25 < α < 1.5,
for a more elaborate discussion please consult Ref. [36].

While we follow the definition that any diffusive process that diverges from the
form 〈x2〉(t) ∝ t is called anomalous, in most cases wewill deal with super-diffusion
where 〈x2〉(t) may be divergent. In order to find a useful statistical measure of the
super-diffusive or fractal process we introduce,

〈v2〉q =
∫ ∞
−∞ dv(F(v))qv2∫ ∞
−∞ dv(F(v))q

, (22)

whichwewill call the q-expectation according to Ref. [58]. Note, that e.g. the exactly
solvable case with α = 1.0 we find that the ordinary expectation diverges, however
as q increases a finite measure is found. Moreover, this gives also the opportunity
to define a pseudo-energy in the system as the smallest possible value q where the
q-expectation converges. Naturally this reduces to the classical energy for α = 2.

In principle, all values of v F(|v| < ∞) should be used for the q-expectation
of F(v). However for numerical tractability we have used a PDF with finite support
F(v)num = F(v) for |v| < 10 and zero everywhere else. Different support ranges
have been tested where extending the range |v| < 15 makes only minor changes.
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It has been proposed analogously to entropy in Boltzmann-Gibbs statistics in
thermodynamics that Tsallis entropy may be used in systems where a significant
amount of extreme events are present. Entropy is a measure on the number of ways
a system can be arranged. In generalized statistical mechanics q-entropy or Tsallis
entropy can be introduced as,

Sq = 1 − ∫
dv(F(v))q

q − 1
. (23)

It is interesting to note that the q-entropy is reduced (by L’Hospital’s rule) to the
conventional Boltzmann-Gibbs entropy S = − ∫

dv log(F(v))F(v) for Gaussian
statistics. The Tsallis entropy will be used to investigate the importance of fractal
structure in velocity space and we will contrast the resulting generalized entropies to
the standard Boltzmann-Gibbs entropy. The resulting Boltzmann-Gibbs and Tsallis
entropies are given in Fig. 4. Contrasting the numerical results with those found
by using the numerical modelling, it is found that the Boltzmann-Gibb entropy is
increasing with q (indicative of diverging statistical moments) and that the Tsallis
entropy is almost flat in the current range and finally seems to decrease for larger q.
This is in qualitative agreement with the analytical model however there are some
quantitative differences. Note that the range q is smaller compared to the analytical
work.

Here in the last part of this paper we will consider the diffusion coefficient using
statistical theory. First, investigations of the diffusion coefficient in terms of statisti-
cal moments such as skewness and kurtosis of the distribution found earlier in Refs.
[59–65], as a first generalization wewill find a solutionwhere the velocity derivatives
in Eq. 25 is modified to accommodate for fractional transport events in a perturbative
manner. Finally we obtain a diffusion equation of the form,

Fig. 4 The numerically
(boxes and circles) and
analytically (diamonds)
found Boltzmann-Gibbs and
Tsallis entropies as a
function of q using Eq. 20 as
a relation between the
non-extensivity and fractality
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[
∂

∂t
+ v · ∂

∂r
− ∂

∂v
D(v)

∂

∂v

]
〈 fs〉 = 0, (24)

where we evaluate the diffusion by the integral expression,

D(v) = q2
s

m2
s

∫ ∞

0
dα

∑
k

Ek(T + α)E−k(T )eik·R〈U 〉(α)e−ik·R. (25)

In order to evaluate the expression for the diffusion coefficient in Eq. 25 we restrict
ourselves to the weakly nonlinear sector and make use of the cumulant expansion
(Gram-Charlier expansion),

〈U (t, 0) exp (−ik · R)〉 ≈ (26)

exp

(
−〈ik · R〉 + 1

2
〈ik · δR(t))2 − 〈ik · δR(t)〉2〉 +

∞∑
n=3

1

n
Cn(k, t)

)
(27)

Here δR = R(t) − R and the coefficients Cn(k, t) are the the third and fourth cumu-
lants are,

C3 = γ σ 3, (28)

C4 = κσ 4. (29)

Here σ is the standard deviation and the γ and κ are the skewness and kurtosis,
respectively.

The average diffusion coefficient is shown in Fig. 5 as a function of the fractal-
ity (α). Exponentially decreasing diffusion with increasing fractality in the range
[1.25 2.00], here α = 2.00 represent the collisionally driven normal diffusion.

Fig. 5 The numerically
estimated diffusion as a
function of the fractality
index α coefficient based on
Langevin model Eqs. (1)–(2)
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The effects of electrostatic Lévy type fluctuations is strongly influencing and
significantly increases the diffusion for small α < 2.0.

4 Summary and Conclusions

Non-linear processeswith non-Gaussian character have attracted significant attention
during recent years however a consistent and efficient model description is still
lacking. In this paper we have investigated two different but connected models based
on the Langevin equations with electrostatic fluctuations of Lévy type and fractal
Fokker-Planck descriptions.

Monte Carlo numerical simulations of charged particle motion, based on the
Langevin equation, in the presence of a fluctuating electric field obeying non-
Gaussian Lévy statistics in a constant magnetic field, and a linear friction repre-
senting the effects of collisional Coulomb drag have been investigated. The Lévy
noise was introduced in order to model the effect of non-local transport due to frac-
tional diffusion in velocity space resulting from intermittent electrostatic turbulence.
The statistical properties of the velocity moments and energy for various values of
the Lévy index α were investigated, and the role of Lévy fluctuations on the parti-
cles Larmor radii, and the statistical moments of displacements were explored. We
observed that as α is decreased, the random walk in energy is strongly influenced by
outlier events which result in intermittent behaviour with appearance of Lévy flights
in between periods of small perturbations. The rate and the amplitude of the inter-
mittent jumps in energy increases significantly as α is decreased. The PDFs of the
particles’ Larmor radii change from an exponential decay to a power law decay when
the stochastic electrostatic process is changed from a Gaussian to a Lévy process.
This corroborates the findings in Ref. [36] that the q-moment is an appropriate metric
characterizing Lévy distributed processes. Our findings suggest that when turbulent
electrostatic fluctuations exhibit non-Gaussian Lévy statistics, gyro-averaging and
guiding centre approximations may not be fully justified and full particle orbit effects
should be taken into account.

One prominent candidate capturing the main features in the dynamics, namely the
Fractional extended Fokker-Planck Equation (FFPE) has been probed theoretically
with support of theMonte Carlo simulations. The FFPE is obtained bymodifying the
velocity derivative to a fractional differential operator allowing for non-local effects
in velocity space. The main reason for including the fractional velocity derivative in
the FPE is to allow for the non-negligible probability of direction preference and long
jumps, i.e., Lévy flights, which therefore allows for asymmetries and long tails in the
equilibrium PDFs, respectively. The non-extensive statistical mechanics of Tsallis
provides velocity space distribution functions intermediate to that of Gaussians and
Lévy distributions adjustable by a continuous real parameter q which seems to be
suitable for comparing with the distribution found in FFPE. However, in this case the
PDFs are considered to be symmetric. For systems comprised of independent or parts
interacting through short-range forces the Boltzmann-Gibb statistical mechanics is
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sufficient however for systems exhibiting fractal structure or long range correlations
this approach becomes unwarranted.

Although somecriticismexists on the appropriateness of using theTsallis statistics
in describing processes with Lévy statistics, however, the aim of the present work
was to shed light on the non-extensive properties of the velocity space statistics and
characterizationof the fractal processes of theFFPE in termsofTsallis statistics in this
particular setting. Jespersen et al. [66], showed the example of the Langevin equation
with a harmonic potential where the Tsallis q-statistics had limited usefulness. The
reason is that using variational calculus of Eq. (23) with the appropriate constraints
the relation between α and q is α = 4−2q

q−1 which is different from Eq. (20) and thus
cannot reproduce the correct scalings. They then concluded that the Tsallis entropy
was not the appropriate framework for Lévy flights in a harmonic potential described
by the generalized Fokker-Planck equation. However, this limitation seems not to
impede the usefulness of the application of Tsallis entropy on this Langevin equation
where the correct scaling is obtained.

In systems with Lévy type character higher statistical moments diverge however
by using the generalized q-moments or q-expectations as,

〈v p〉q =
∫

dvF(v)qv p/

∫
dvF(v)q (30)

convergent measures of fractality can be obtained although the regular moments
diverges. This also permits us to define a convergent pseudo-energy that is always
convergent. In the first step it was shown that the PDFs obtained from the Tsallis
statistics could describe the solutions to the FFPE with good agreement. Moreover,
we find that self-organising behavior is present in the system where the ratio of
the entropy and energy expectation is decreasing with decreasing fractionality or
increasing α. Finally, it seems that a FFPE is a viable candidate for explaining
certain non-linear features ubiquitous to anomalous plasma transport as well as for
other physical processes.
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Analysis of Low-Frequency Instabilities
in Low-Temperature Magnetized Plasma

Dan-Gheorghe Dimitriu and Maricel Agop

1 Introduction

The study of the plasma instabilities is still a hot topic in physics, especially because
of their involvement in the physics of controlled nuclear fusion, aswell as inmaintain-
ing stable regimes for technological plasmas [31]. In low-temperature magnetized
plasmas, most of the experimental investigations of instabilities were carried out in
the Q-machines [4–7, 13, 14, 19, 20, 22, 30], the most investigated instabilities being
the potential relaxation instability (PRI) and the electrostatic ion-cyclotron insta-
bility (EICI). These instabilities appear as oscillations of the plasma parameters,
sometimes showing strongly nonlinear behavior.

PRI and EICI are excited by drawing an electron current parallel to the magnetic
field to a disk electrode which is inserted into the plasma column perpendicular to the
axis. For exciting the PRI, the radius of the electrode has to be larger than the plasma
column, while for exciting the EICI, the radius of the electrode must be considerably
smaller than that of the plasma column, but still in range of a few ion gyroradii. A
transition from PRI to EICI by decreasing the diameter of the electrode was reported
by Schrittwieser [35]. Dimitriu et al. [13] reported on the simultaneous excitation of
PRI and EICI, with comparable amplitudes. This led to a strong modulation of the
EICI by PRI, which affected not only the amplitude but also the frequency of the
EICI. Because of this, in the spectrum of the current oscillations sidebands around
f EICI appear with a frequency difference equal to ±f PRI.
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Traditionally, the magnetized plasma of a Q-machine was considered to be col-
lisionless. Starting with this assumption, phenomenological models were developed
for PRI [19] and EICI [34]. However, Sanduloviciu [32] proposed a new model for
EICI, by supposing that this instability is triggered by the dynamics of a 3D double
layer developed in front of the electrode as the result of the electron-neutral impacts
excitation and ionization, similar to the phenomenology of the anodic fireballs [33].
The same assumption of low collisionality in the Q-machine plasma was considered
by Avram et al. [4–7] to explain the nonlinear effects experimentally observed in
relation to PRI and EICI. Dimitriu et al. [13] explained the interaction between the
simultaneous excited PRI and EICI also by taking into consideration of collisions
in the Q-machine plasma, concluding that the traditional opinion that a Q-machine
plasma can be considered collisionless cannot be maintained.

To develop a new model we have to admit that the Q-machine plasma can achieve
self-similarity (space-time structures can appear) associated with strong fluctuations
at all possible space-time scales [11, 12, 15]. Then, for time scales that prove to
be larger when compared with the inverse of the highest Lyapunov exponent, the
deterministic trajectories are replaced by a collection of potential routes. At its turn,
the concept of “definite position” is replaced by that of probability density [24, 28,
29]. The most impressive example in this respect refers to collision processes in Q-
machine plasma. By accepting the presence of collisions in the Q-machine plasma,
the dynamics of the particles can be described through non-differentiable curves (i.e.
fractal curves). Then, the fractality appears as a universal property of the Q-machine
plasma and the complexity of interactions in the dynamics of the Q-machine plasma
is replaced by fractality.

Since the theoretical models which describe the dynamics of the Q-machine
plasma are sophisticated, in the present paper a new model will be developed using
the Scale Relativity Theory (SRT) with arbitrary constant fractal dimension [1–3,
8–10, 16, 17, 25–27]. The model is able to predict the interaction between the simul-
taneously excited PRI and EICI, phenomenon which is experimentally evidenced.

2 Hallmarks of Fractality

We can simplify the dynamics of the Q-machine plasma by assuming that its particles
(electrons, ions, neutrals) move on fractal curves. Once accepted such a hypothesis,
the dynamics of the Q-machine plasma particles is given by the fractal operator d̂/dt
[1, 10]:

d̂

dt
� ∂

∂t
+ V̂ · ∇ − i

λ2

τ

(
dt

τ

)(2/DF )−1

�, (1)

where

V̂ � V D − iV F (2)
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is the complex velocity, VD is the differentiable and resolution scale independent
velocity, VF is the non-differentiable and resolution scale dependent velocity. In
Eq. (1), V̂ · ∇ is the convective term, λ2

τ

(
dt
τ

)(2/DF )−1
� is the dissipative term, DF

is the fractal dimension of the movement curve, λ is the space scale, τ is the time
scale, dt/τ is the scale resolution and λ2/τ is a specific coefficient associated to the
fractal—non-fractal transition. For DF any definition can be used (the Hausdorff-
Besikovici fractal dimension, the Kolmogorov fractal dimension, etc. [24]), but once
accepted such a definition forDF , it has to be maintained over the entire analysis. In a
particular case, when the motions of the Q-machine plasma particles are considered
on Peano curves, i.e. DF �2, the fractal operator (1) reduces to Nottale’s operator
[28, 29].

Applying the fractal operator (1) to the complex velocity (2) and accepting the
principle of scale covariance [28, 29] in the form

d̂V̂
dt

� 0, (3)

the motion equation is obtained:

d̂V̂
dt

� ∂ V̂
∂t

+
(
V̂ · ∇

)
V̂ − i

λ2

τ

(
dt

τ

)(2/DF )−1

�V̂ � 0. (4)

It means that at any point of a fractal path, the local acceleration term,

∂t V̂ , the non-linearly (convective) term,
(
V̂ · ∇

)
V̂ and the dissipative term,(

λ2/τ
)
(dt/τ)(2/DF )−1�V̂ , make their balance. Therefore, the Q-machine plasma

dynamics can be assimilated with the dynamics of a “rheological” fluid. This dynam-
ics is described by the complex velocity field V̂ , the complex acceleration field
d̂V̂/dt � 0 and by the imaginary viscosity type coefficient i

(
λ2/τ

)
(dt/τ)(2/DF )−1.

For irrotational motions of the Q-machine plasma particles

∇ × V̂ � 0, ∇ × V D � 0, ∇ × V F � 0, (5)

V̂ can be chosen on the form:

V̂ � −i
λ2

τ

(
dt

τ

)(2/DF )−1

∇ lnψ, (6)

where φ � lnψ is the velocity scalar potential. By substituting (6) in (4) and using
the method described by Munceleanu et al. [25], it results:

d̂V̂
dt

� −i
λ2

τ

(
dt

τ

)(2/DF )−1

∇
[

∂ lnψ

∂t
− i

λ2

τ

(
dt

τ

)(2/DF )−1∇ψ

ψ

]
� 0. (7)

This equation can be integrated in a universal way and yields
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λ4

τ 2

(
dt

τ

)(4/DF )−2

�ψ + i
λ2

τ

(
dt

τ

)(2/DF )−1
∂ψ

∂t
� 0, (8a)

up to an arbitrary phase factor which may be set to zero by a suitable choice of the
phase of ψ . The presence of an external scalar potential ϕ transforms Eq. (8a) in the
form:

λ4

τ 2

(
dt

τ

)(4/DF )−2

�ψ + i
λ2

τ

(
dt

τ

)(2/DF )−1
∂ψ

∂t
− ϕ

2
ψ � 0. (8b)

For motions of plasma particles on Peano’s curves,DF �2, the Eqs. (8a, 8b) takes
the Nottale’s form [28, 29]. Moreover, for motions of plasma particles on Peano’s
curves at Compton scale, λ2/τ � �/2μ, with � the reduced Planck constant and
μ the reduced mass of the plasma particles, the relation (8a) becomes the standard
Schrödinger equation. Such a physical situation can be found in the case of degenerate
plasmas (fusion hot plasmas).

If ψ � √
ρei S with

√
ρ the amplitude and S the phase of ψ , the complex velocity

field (6) takes the explicit form:

V̂ � λ2

τ

(
dt

τ

)(2/DF )−1

∇S − i
λ2

2τ

(
dt

τ

)(2/DF )−1

∇ ln ρ, (9a)

V D � λ2

τ

(
dt

τ

)(2/DF )−1

∇S, (9b)

V F � λ2

2τ

(
dt

τ

)(2/DF )−1

∇ ln ρ. (9c)

By substituting (9a–9c) in (4) and separating the real and the imaginary parts, up
to an arbitrary phase factor which may be set at zero by a suitable choice of the phase
of ψ , we obtain:

∂V D

∂t
+ (V D · ∇)V D � −∇Q, (10a)

∂ρ

∂t
+ ∇ · (ρV D) � 0, (10b)

with Q the specific fractal potential

Q � −2
λ4

τ 2

(
dt

τ

)(4/DF )−2
�

√
ρ√

ρ
� −V 2

F

2
− λ2

τ

(
dt

τ

)(2/DF )−1

∇ · V F . (11)

Equation (10a) represents the specific momentum conservation law, while Eq. (10b)
represents the states density conservation law. Equations (10a–10b) and (11) define
the fractal hydrodynamics model (FHM).
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The following conclusions are obvious:

(i) any particle of the Q-machine plasma is in permanent interaction with the
fractal medium through the specific fractal potential (11);

(ii) the fractal medium is identified with a non-relativistic fractal fluid described by
the specific momentum and probability density conservation laws, (10a-10b)
(FHM);

(iii) the fractal speed VF does not represent an actual mechanical model, but con-
tribute to the transfer of specific momentum and the concentration of energy.
This may be clearly seen from the absence of VF from the probability density
conservation law (10b) and from its role in the variational principle [28, 29];

(iv) any interpretation of the fractal potentialQ should take cognizance of the “self”
or internal nature of the specific momentum transfer.While the energy is stored
in the form of the mass motion and potential energy (as classically it is), some
is available elsewhere and only the total one is conserved. It is the conservation
of energy and specific momentum that ensures the reversibility and existence
of eigenstates, but denies a Brownian motion type form of interaction with an
external medium;

(v) the specific fractal potential must be considered as a kinetic term and not as a
potential one. This generates the viscosity stress tensor type [25]:

σ̂il � λ4

τ 2

(
dt

τ

)(4/DF )−2(
∇i∇lρ − ∇iρ∇lρ

ρ

)
� η

(
∂VFl

∂xi
+

∂VFi

∂xl

)
, (12)

with η � (ρ/2)
(
λ2/τ

)
(dt/τ)(2/DF )−1 a viscosity type coefficient, which diver-

gence is equal to the usual force density associated to Q:

∇i σ̂il � −ρ∇l Q. (13)

The diagonal form of the viscosity stress type tensor, σ̂il � σδil , where δil
is the Kronecker’s pseudo-tensor, implies correspondences of FHM with the
standard hydrodynamic model [23];

(vi) since the position vector of the Q-machine plasma particle is assimilated to a
stochastic process ofWiener type [24, 28, 29],ψ is not only the scalar potential
of complex velocity (through lnψ) in the fractal hydrodynamics, but also the
density of probability (through |ψ |2) in the Schrödinger type theory. It results
the equivalence between the formalism of the fractal hydrodynamics and the
Schrödinger type one.Moreover, the chaoticity, either through turbulence in the
fractal hydrodynamics approachor through stochasticization in theSchrödinger
type approach, is generated only by the non-differentiabilty of the movement
trajectories in a fractal space.
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3 Potential Relaxation Instability

The phenomenology of the PRI was described [12–14] by considering that, after a
self-organization process, in front of theQ-machine cold plate a double layer appears,
of which dynamics determines the dynamics of another double layer between the
Q-machine hot and cold plates. Thus, in this case, the dynamics reduces to that one
of an interface generated at the contact of two different plasmas, from which one
is enriched in positive ions. Mathematically, such a dynamics can be described by
using the Schrödinger type Eq. (8b) in the form:

2iμD
dψ

dt
� Hψ, (14a)

D � λ2

τ

(
dt

τ

)(2/DF )−1

, (14b)

applied to the initially isolated and finally in contact plasmas, where H is the asso-
ciated “Hamiltonian”.

Then, let’s consider two physical objects (associated to the two plasmas) separated
by an interface (associated to the double layer). If the interface is thick enough so that
the physical objects are isolated from each other, the time-dependent Schrödinger
type equations [see Eq. (8b)] for each side are:

2iμD
dψ1

dt
� H1ψ1, (15a)

2iμD
dψ2

dt
� H2ψ2, (15b)

whereψi are thewave functions of the physical objects andHi are the “Hamiltonians”
on either side of the interface. Let’s assume that a voltage 2U is applied between the
two physical objects. If the zero value of the potential is assumed to be in the middle
of the interface, let’s consider that the potential of the physical object 1 is −U, while
the potential of the physical object 2 is +U.

The interface presence leads to a coupling of the Eqs. (15a, 15b) in the form

2μD
dψ1

dt
� eUψ1 + Γ ψ2, (16a)

2μD
dψ2

dt
� −eUψ2 + Γ ψ1, (16b)

where Γ is the coupling constant for the wave functions across the interface. Since
the square of each wave function is a probability density, the two wave functions can
be written in the form:

ψ1 � √
ρ1e

iθ1 , (17a)

ψ1 � √
ρ1e

iθ1 , (17b)
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Θ � θ2 − θ1. (17c)

If the two wave functions are substituted in the coupled Eqs. (16a, 16b) and the
results are separated into real and imaginary parts, the time dependences of the
particle densities and the phase difference are obtained:

dρ1

dt
� Γ

μD

√
ρ1ρ2 sinΘ, (18a)

dρ2

dt
� − Γ

μD

√
ρ1ρ2 sinΘ, (18b)

dΘ

dt
� eV

μD
� Ω. (18c)

The current density can be specified in terms of the difference between Eqs. (18a)
and (18b), multiplied by e

j � e
d

dt
(ρ1 − ρ2) � jc sinΘ, (19)

where

jc � 2eΓ

μD

√
ρ1ρ2 (20)

is the critical current.
From (18c) it results that a phase change accompanies the presence of a volt-

age across a interface. Since the applied voltage is constant, (18c) can be directly
integrated, giving

Θ(t) � Θ0 +
eU

m0D
t � Θ + Ωt, (21a)

Θ0 � const., (21b)

which provides the characteristic frequency (18c). Now, the current density can be
written in the form:

j � jc sin(Ωt + Θ0). (22)

Thus, PRI behaves as periodic oscillations of the current (22) collected by the
Q-machine cold plate, with the characteristic frequency (18c). By choosing the
fractal—non-fractal diffusion coefficient on the form D � dc, where d is the distance
between the hot and cold plates and c is the ion-acoustic velocity, the characteristic
frequency takes the form:
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Ω � eU

2μdc
, (23)

being proportional with the applied voltage on the cold plate and inverse proportional
with the distance between the Q-machine hot and cold plates. Such proportionality
was experimentally observed [13, 19].

4 Electrostatic Ion-Cyclotron Instability

EICI behaves as coherent oscillations of the Q-machine plasma potential with a
frequency slightly higher than the ion-cyclotron frequency. The electron gyroradius
is much smaller than the ion gyroradius, so that it can be considered that the electrons
don’t move in the direction perpendicular to themagnetic field lines. So, the electrons
can be considered as inertials, with Boltzmann distribution.

Let’s reconsider the equations of FHM for ionic fluids, the electronic one being
with Boltzmann distribution:

ne � n0 exp

(
eU

kBTe

)
, (24)

where n0 is the unperturbed plasma density, U is the voltage, Te is the electron
temperature and kB is the Boltzmann constant. According to (10a, 10b) of the FHM
and choosing the diagonal form of σ̂il , the ion dynamics can be characterized by:

(a) one-dimensional motion equation

mi

(
∂Vi

∂t
+ Vi

∂Vi

∂x

)
� −q

∂U

∂x
+ qVi B, (25)

(b) one-dimensional continuity equation

∂ni
∂t

+
∂(ni Vi )

∂x
� 0, (26)

together with the one-dimensional Poisson’s equation

∂2U

∂x2
� e

ε0
(ne − ni ), (27)

where Vi is the ion velocity, ni is the ions density, Ti is the ion temperature, mi is the
ion inertial mass, x and t are the spatial and temporal coordinates, q is the electric
charge, B is the magnetic field induction and ε0 is the vacuum permittivity. Now, by
introducing the dimensionless variables
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φ � eV

kTe
, (28a)

V � Vi

c
, (28b)

n � ni
n0

, (28c)

ξ � x

λ
, (28d)

τ � ωt, (28e)

where λ is a characteristic length,ω is a characteristic frequency and c � (kTe/mi )1/2

is the ion-acoustic speed, the Eqs. (25), (26) and (27) become

∂V

∂τ
+ V

∂V

∂ξ
� −∂φ

∂ξ
+

ωB

ω
V, (29a)

∂n

∂τ
+

∂

∂ξ
(nV ) � 0, (29b)

∂2φ

∂ξ 2
� (

eφ − n
)
, (29c)

where ωB � qB/mi . A stationary solution of the equations system (29a–29c) is
searched, by introducing the spatio-temporal dependence through the variable

η � ξ − Mτ, (30)

where M � w/c is the Mach’s number and w is the double layer velocity. By taking
into account (30), the equations system (29a–29c) become

−M
dV

dη
+ V

dV

dη
� −dφ

dη
+

ωB

ω
V, (31a)

−M
dn

dη
+

d

dη
(nV ) � 0, (31b)

d2φ

dη2
� (

eφ − n
)
, (31c)

where further, by integrating the relations (31a, 31b), it follows

−MV +
V 2

2
� −φ +

ωB

ω

∫
V (η)dη + C1, (32a)

−Mn + nV � C2, (32b)

C1 and C2 being two integration constants. By imposing the limit conditions:

φ(η → ±∞) → 0, (33a)
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V (η → ±∞) � 0, (33b)

n(η → ±∞) → 1, (33c)

and resolving the integral from (32a) by the method described by Jackson [21]
and Hou [18], eliminating the velocity between (32a) and (32b), and taking into
consideration just the first order terms in φ, the following relation is obtained:

n ≈ 1 − φ

M
2 , (34a)

M
2 ≈ 1 + 1.42

(ωB

ω

)2
. (34b)

In these conditions, the Poisson equation (31c) takes the form (in the same approxi-
mation for φ as above):

d2φ

dη2
≈

(
1 − 1

M
2

)
φ. (35)

In particular, for ξ �const., Eq. (35) in temporal coordinate becomes:

d2U

dt2
+ 1.4ω2

BU ≈ 0, (36)

which specifies the periodic potential

U � U0 cos(1.19ωBt + ϕ0), ϕ0 � const. (37)

Thus, an oscillatory potential is obtained, with the frequency ΩB � 1.19ωB , in
agreement with the experimental findings [30].

5 Interaction Between Potential Relaxation Instability
and Electrostatic Ion-Cyclotron Instability

In the above conditions, if one overlays the ac voltage (37) over the dc voltage from
(22), the current density can be written as an infinite series of products of Bessel
functions Jn and sine waves

j(t) � jc sin

(
eU

μD
t +

eU0

μD
t cosΩt + Θ0

)

� jc
∑
n

(−1)n Jn

(
eU0

μDΩ

)
sin

[
(ΩB − nΩ)t + Θ ′] (38)
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where Θ ′ is an integration constant. Thus, the amplitude and frequency modulations
of the current density are obtained.

6 Experimental Confirmation of the Interaction Between
Potential Relaxation Instability and Electrostatic
Ion-Cyclotron Instability

The experiments were performed in the single-ended Q-machine of the University of
Innsbruck, extensively described in other works [13, 14]. The background pressure
of the residual gases was less than 10−5 mbar. The potassium plasma density was npl∼�108–109 cm−3 and the ion and electron temperature were Te

∼�Ti
∼�0.2 eV. The

confining magnetic field was 0.05 T<B <0.2 T, while the diameter of the plasma
column was of 3.5 cm.

At a distance of d �27.5 cm from the hot plate a tantalum disk electrode (cold
plate) of 1 cmdiameterwas inserted in the center of the plasma column, perpendicular
to the magnetic field lines. By positively biasing the cold plate, a current was drawn
through a channel of roughly the same diameter as the cold plate. By increasing the
voltage applied on the cold plate, the EICI is the first instability which appears, with
a frequency of about f EICI ∼�67 kHz. The identity of the EICI has been proved by
measuring the well-known linear increase of the frequency with the magnetic field
induction B. The PRI appears at higher values of the voltage, with small amplitude
and a frequency of about f PRI ∼�15 kHz. Further increasing the voltage applied on
the cold plate leads to an increase of the PRI amplitude. When the amplitudes of
the two instabilities become of almost the same order of magnitude, the interaction
between the instabilities leads to a strongmodulation of the EICI by the PRI, not only
in amplitude (see the oscillations of the current collected by the cold plate in Fig. 1a)
but also in frequency (see the Fast Fourier Transform of the current oscillations
collected by the cold plate in Fig. 1b), and consequently sidebands around f EICI are
formed with a frequency f EICI ± f PRI. The EICI amplitude modulation with the PRI
frequency affects more strongly the negative excursions of the current (see Fig. 1a)
because of the current limitation due to the formation of thermal barriers in front
of the periodically traveling double layer, a well-known feature of both instabilities
[19, 30, 34].

The experimental results shown in Fig. 1a, b confirm the prediction of the theo-
retical model through the relation (38).
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Fig. 1 Time series of the current oscillations collected by the electrode a and their FFT b, showing
the strong interaction between the PRI and EICI

7 Conclusions

A theoretical model was developed in the frame of the scale relativity theory to
describe some characteristics of two low-frequency instabilities of the magnetized
plasma produce by aQ-machine: potential relaxation instability and electrostatic ion-
cyclotron instability. It was found that the potential relaxation instability frequency is
proportional with the voltage applied on the cold plate and inverse proportional with
the distance between the cold and hot plates of the Q-machine, as experimentally
observed. In the case of electrostatic ion-cyclotron instability, its frequencywas found
to be 1.19 times ion-cyclotron frequency, a result also in excellent agreement with
the experimental findings.

The theoretical model is also able to explain interaction between the two above-
mentioned instabilities, which leads to the amplitude and frequency modulation of
the second instability by the first one. Experimental result are shown, which are in
agreement with the theoretical model predictions.

Acknowledgements This work was supported by a grant of Romanian Ministry of Research and
Innovation, CNCS—UEFISCDI, project number PN-III-P4-ID-PCE-2016-355, within PNCDI III.

References

1. M. Agop, N. Forna, I. Casian-Botez, C. Bejenariu, New theoretical approach of the physical
processes in nanostructures. J. Comput. Theor. Nanosci. 5, 483–489 (2008)

2. M. Agop, P. Nica, M. Girtu, On the vacuum status in Weyl-Dirac theory. Gen. Relativ. Gravit.
40, 35–55 (2008)

3. M. Agop, P. Nica, O. Niculescu, D.G. Dimitriu, Experimental and theoretical investigations of
the negative differential resistance in a discharge plasma. J Phys Soc Japan 81, 064502 (2012)

4. C. Avram, R. Schrittwieser, M. Sanduloviciu, Possible excitation and ionization processes in
a “collisionless” alkaline plasma. Int. J. Mass Spectrom. 184, 129–143 (1999)



Analysis of Low-Frequency Instabilities in Low-Temperature … 105

5. C. Avram, R. Schrittwieser, M. Sanduloviciu, Current jumps and hysteresis in a single-ended
Q-machine in connection with the electrostatic ion-cyclotron instability. Contrib. Plasma Phys.
39, 223–233 (1999)

6. C. Avram, R. Schrittwieser, M. Sanduloviciu, Nonlinear effects in the current-voltage charac-
teristic of a low-density Q-machine plasma: I. Related to the potential relaxation instability. J.
Phys. D Appl. Phys. 32, 2750–2757 (1999)

7. C. Avram, R. Schrittwieser, M. Sanduloviciu, Nonlinear effects in the current-voltage char-
acteristic of a low-density Q-machine plasma: II. Related to the electrostatic ion-cyclotron
instability. J. Phys. D: Appl. Phys. 32, 2758–2762 (1999)

8. I. Casian-Botez, M. Agop, P. Nica, V. Paun, V. Munceleanu, Conductive and convective types
behaviors at nano-time scales. J. Comput. Theor. Nanosci. 7, 2271–2280 (2010)

9. C. Ciubotariu, M. Agop, Absence of a gravitational analog to theMeissner effect. Gen. Relativ.
Gravit. 28, 405–412 (1996)

10. M. Colotin, G.O. Pompilian, P. Nica, S. Gurlui, V. Paun,M. Agop, Fractal transport phenomena
through the scale relativity model. Acta Phys. Pol. A 116, 157–164 (2009)

11. N. D’Angelo, R.W. Motley, Electrostatic oscillations near the ion cyclotron frequency. Phys.
Fluids 5, 633–634 (1962)

12. D.G. Dimitriu, Electrostatic Instabilities in the Q-machine Plasma (in Romanian) (Demiurg
Editorial House, Iasi, Romania, 2006)

13. D.G. Dimitriu, V. Ignatescu, C. Ionita, E. Lozneanu, M. Sanduloviciu, R.W. Schrittwieser, The
influence of electron impact ionisations on low frequency instabilities in a magnetised plasma.
Int. J. Mass Spectrom. 223–224, 141–158 (2003)

14. D.G. Dimitriu, C. Ionita, R. Schrittwieser, Nonlinear effects related to the simultaneous exci-
tation of three instabilities in magnetized plasma. Contrib. Plasma Phys. 51, 554–559 (2011)

15. W.E. Drummond, M.N. Rosenbluth, Anomalous diffusion arising from microinstabilities in a
plasma. Phys. Fluids 5, 1507–1513 (1962)

16. S. Gurlui, M. Agop, M. Strat, S. Bacaita, Some experimental and theoretical results on the
anodic patterns in plasma discharge. Phys. Plasmas 13, 063503 (2006)

17. S. Gurlui, M. Agop, P. Nica, M. Ziskind, C. Focsa, Experimental and theoretical investigations
of transitory phenomena in high-fluence laser ablation plasma. Phys. Rev. E 78, 026405 (2008)

18. T.Y. Hou, Multi-Scale Phenomena In Complex Fluids: Modeling, Analysis and Numerical
Simulations (World Scientific, Singapore, 2009)

19. S. Iizuka, P. Michelsen, J.J. Rasmussen, R. Schrittwieser, R. Hatakeyama, K. Saeki, N. Sato,
Dynamics of a potential barrier formed on the tail of a moving double layer in a collisionless
plasma. Phys. Rev. Lett. 48, 145–148 (1982)

20. S. Iizuka, P. Michelsen, J.J. Rasmussen, R. Schrittwieser, R. Hatakeyama, K. Saeki, N. Sato,
Double layer dynamics in a collisionless magnetoplasma. J. Phys. Soc. Jpn. 54, 2516–2529
(1985)

21. E.A. Jackson, in Perspectives in Nonlinear Dynamics, vols 1 and 2 (Cambridge University
Press, Cambridge, UK, 1991)

22. M.E. Koepke, W.E. Amatucci, J.J. Carol III, T.E. Sheridan, Experimental verification of the
inhomogeneous energy-density driven instability. Phys. Rev. Lett. 72, 3355–3358 (1994)

23. L.D. Landau, E.M. Lifshitz, Fluid Mechanics, 2nd edn. (Pergamon Press, Oxford, UK, 1987)
24. B. Mandelbrot, in The fractal geometry of nature (updated and augm. ed.) (W. H. Freeman,

New York, USA, 1983)
25. G.V. Munceleanu, V.P. Paun, I. Casian-Botez, M. Agop, The microscopic-macroscopic scale

transformation through a chaos scenario in the fractal space-time theory. Int. J. Bif. Chaos 21,
603–618 (2011)

26. P. Nica, P. Vizureanu, M. Agop, S. Gurlui, C. Focsa, N. Forna, P.D. Ioannou, Z. Borsos,
Experimental and theoretical aspects of aluminium expanding laser plasma. Jpn. J. Appl. Phys.
48, 066001 (2009)

27. P. Nica, M. Agop, S. Gurlui, C. Bejinariu, C. Focsa, Characterization of aluminium laser
produced plasma by target current measurements. Jpn. J. Appl. Phys. 51, 106102 (2012)



106 D.-G. Dimitriu and M. Agop

28. L.Nottale,Fractal Space-Time andMicrophysics: TowardsATheoryOf Scale Relativity (World
Scientific, Singapore, 1993)

29. L. Nottale, Scale relativity and fractal space-time: a new approach to unifying relativity and
quantum mechanics (Imperial College Press, London, UK, 2011)

30. J.J. Rasmussen, R. Schrittwieser, On the current-driven electrostatic ion-cyclotron instability:
a review. IEEE Trans. Plasma Sci. 19, 457–501 (1991)

31. S. Samukawa, M. Hori, S. Rauf, K. Tachibana, P. Bruggeman, G. Kroesen, J. Christopher
Whitehead, A.B. Murphy, A.F. Gutsol, S. Starikovskaia, U. Kortshagen, J.P. Boeuf, T.J. Som-
merer, M.J. Kushner, U. Czarnetzki, N. Mason, The 2012 plasma roadmap. J. Phys. D: Appl.
Phys. 45, 253001 (2012)

32. M. Sanduloviciu, Quantum processes as generators of the energy source for ion-cyclotron
oscillations. Rev. Roum. Phys. 32, 745–756 (1987)

33. M. Sanduloviciu, E. Lozneanu, On the generation mechanism and the instability properties of
anode double layers. Plasma Phys. Control. Fusion 28, 585–595 (1986)

34. N. Sato, R. Hatakeyama, A mechanism for potential-driven electrostatic ion-cyclotron oscilla-
tions in plasma. J. Phys. Soc. Japan 54, 1661–1664 (1985)

35. R. Schrittwieser, Modulation of the current-driven ion-cyclotron instability by the potential
relaxation instability. Phys. Fluids 26, 2250–2255 (1983)



Theoretical Modeling of the Interaction
Between Two Complex Space Charge
Structures in Low-Temperature Plasma

Stefan Irimiciuc, Dan-Gheorghe Dimitriu and Maricel Agop

1 Introduction

Discharge plasmas can be assimilated to complex systems taking into account their
structural-functional duality [2, 23]. The standardmodels [fluidmodel, kineticmodel
etc. [7, 24] used to study the discharge plasma dynamics are based on the hypothesis,
otherwise unjustified, on the differentiability of the physical variables that describes
it, such as energy, momentum, density, etc. The success of the differentiable models
must be understood sequentially, i.e. there are domains large enough for the differ-
entiability to be valid.

But differential methods fail when facing the physical reality. Instabilities of the
discharge plasmas that can generate chaos or patterns through self-structuring must
be analyzed by means of the non-differentiable (fractal) methods [4, 12, 13, 18, 20].

In order to describe some of the dynamics presented in a plasma discharge by
means of the non-differentiable method, and still remain treatable as differential
method, it is necessary to introduce, the scale resolution, both in the expressions of
the physical variables and the dynamics equations. Thismeans that any dynamic vari-
able dependent, in a classical meaning, on the spatial coordinates and time, become
dependent also, in a non-differential meaning, on the scale resolution. In other words,
instead of working with a dynamic variable, described by means of a mathematical
function strictly non-differentiable, we will work just with the different approxi-
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mation of the variable, derived though its averaging at different scale resolutions.
Consequently, any dynamic variable acts as the limit of a family of functions, the
functions being non-differentiable for a non-zero scale resolution and differentiable
for a null scale resolution [22, 26, 27].

This approach, well adapted to the discharge plasmas dynamics, where any real
determination is conducted at a finite scale resolution, clearly implies the develop-
ment of both a new geometric structure and a physical theory applied to discharge
plasmas dynamics, for which the motion laws, invariant to spatial and temporal coor-
dinate transformations, need to be completed with scale laws, invariant to the scale
transformations. Such a physical theory that includes the geometric structure based
on the above presented assumptions was developed both in the Scale Relativity The-
ory with fractal dimension 2 [26, 27] and in the extended Scale Relativity Theory,
i.e. the Scale Relativity Theory with an arbitrary constant fractal dimension [11, 22].
In the field of discharge plasma, if we assume that the complexity of the interactions
in the plasma volume is replaced by non-differentiability (fractality), the constrained
motions on continuous but differentiable curves in a Euclidian space of the discharge
plasmas particles are replaced with the free motions, without any constrains, on con-
tinuous but non-differentiable curves in a fractal space of a “special fluid” (we call
it fractal fluid). Thus, the deterministic trajectories are replaced by a collection of
potential states, so that the concept of “definite position” is substituted by that of a
“definite probability density”. As a consequence, the determinism and potentiality
(non-determinism) become distinct parts of the same “evolution”, through reciprocal
interactions and conditioning, in such way that the plasma discharge particles are
substituted with the geodesics themselves [8, 14, 26, 27].

2 Theoretical Investigations of the Electronic Oscillations
in Discharge Plasmas

Let us assume that a discharge plasma can behave like a multifractal system. Some
facets of this statement were previously discussed in [11, 25]. Furthermore, any of the
plasmaparticles, eitherwe discus about the electrons, atoms, or ions, are in permanent
interactions in the plasma volume. In-between two collisions, the trajectory of a
particle is assumed to be a straight line, that describes the differential framework
of the movement, while in the impact point it is a “pre-fractal” that could specify
the non-differentiable character of the movement. Considering that all the collisions
impact points are forming an uncountable set of points, it results that the trajectories
become fractals. So, in the framework of the collective movement of the discharge
plasma particles, different classes of trajectories are appearing and thus, different
fractals associated to these trajectories simultaneously exist. Therefore, from a global
perspective the discharge plasma appears to behave like a multifractal system (for
details on the concept of multifractality we recommend the following reference [4,
12, 13, 18, 20].
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In such a conjecture, the presence of external constrains on the discharge plasma
implies, by means of the fractal theoretical models, analysis of the particle dynamics
at particular scale resolutions. In this way we will select both the trajectories classes
and the type of fractal characterizing the movement of the particles. Since, generally,
the fractality is of stochastic type [20, 26, 27], by applying an external constrains to
the discharge plasma, we are also able to select a certain stochastic distribution which
is compatible with the ab initio constrains. More precisely, we define the average
values of the physical variables with respect to the distribution that defines the class
of the measurable physical quantities for a particular experiment.

Let us reconsider the previously mentioned formalism and analyze the dynamics
of a discharge plasma on which an external constrains is applied (for example a
positive voltage applied to an electrode immersed into plasma).

By means of such constrains, from all the possible dynamics of the discharge
plasma particles, only those compatible with these constrains are selected. These
dynamics can be “seen” through local Ohm law as variations of the macroscopic
conduction current density J [16, 35]:

με

σ

∂2 J
∂t2

+ μ
∂ J
∂t

� 1

σ
�J − ∇ · (∇ · J)

, (1)

where μ is the magnetic permeability, ε is the electrical permittivity and σ is the
electrical conductivity of the discharge plasma, � is the Laplace operator, ∇ the
gradient operator and ∇ is the divergence operator.

By applying now the variable separation method from [5] in Eq. (1):

J l(x, y, z, t) � J l1(x, y, z)J2(t), (2)

we obtain:

1

σ

[
∂ i∂i J

l
1 − ∂ l∂i J

i
1

]
+ λJ l1 � 0, (3)

με

σ

∂2 J2
∂t2

+ μ
d J2
dt

+ λJ2 � 0, (4)

where λ = const. > 0 is a variable separation constant.
By applying Eq. (1) with the explicit forms (Eqs. 3 and 4) to the physical phe-

nomena from our experiment, we need to take into account the following:

(i) Considering the “restrictions” imposed by our experiment we will have infor-
mation only about the temporal evolution of the current density, i.e. J2(t) is
assimilated to the discharge current, while the spatial dependences are disre-
garded.

(ii) The introduction of external restrictions for the discharge plasma dynamicswill
be analyzed as follows: the dynamics of an electron beam accelerated by an
electrical field which impinges into a neutral medium is analyzed. As a results
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of these restrictions, ionizations are produced both by the primary electrons
(from the beam) which are accelerated by the electric field αJ0 � const.—with
α a coefficient associated with the primary ionization process and J0 the beam
current density—and the secondary electrons which result from the ionization
processes, βJ0ρe—with β a coefficient associated with the secondary ioniza-
tion process and ρe is the electron density. As such, the electric field perceived
by the secondary electrons is weaker than that of the primary ones. The con-
tribution of the secondary electrons to the overall discharge plasma dynamics
can be negligible so that we can impose βJ0ρe → 0.

(iii) Electron density is much higher than that of the ions; we will further focus
on the study of the discharge plasma dynamics induced only by the electron
branch by means of Eq. (4).

(iv) Themulti-fractal character of the discharge plasmadynamicswill be introduced
bymeans of structural constant dependencies:α, σ ,μ, ε on the fractality degree
Λ � λ0(dt)

(2/ DF )−1 as follows:

α � α(Λ), μ � μ(Λ), ε � ε(Λ), σ � σ(Λ), (5)

where, λ0 is the coefficient associated to the fractal-non-fractal resolution scale, dt
is the resolution scale and DF is the fractal dimension of the movement curve of a
plasma particle. Thus, in the discharge plasma, movements on fractal curves with
different associated fractal dimensions (differences induced by their density and
kinetic/thermal energy) simultaneously exist, which impose a multifractal character.
Let us notice that for DF � 2 the discharge plasma dynamics have a quantum char-
acters, for DF < 2 the dynamics are correlative, while for DF > 2 the dynamics are
non-correlative [20, 26, 27].

Therefore, in such context both chaos and self-structuring become fundamental
states in the evolution of the discharge plasma. Considering the previously made
considerations, the dynamics of discharge plasmas can be given by the following
evolution equation:

με

σ

∂2 J2
∂t2

+ μ
d J2
dt

+ λJ2 � 0, (6)

and by using the following substitutions:

M � με

σ
, 2R � μ, K � λ, δ J3 � λJ2 − α J0, J3 � q (7)

Equation (6) will take the form of a damped harmonic oscillator:

Mq̈ + 2Rq̇ + Kq � 0. (8)

Then, M becomes the equivalent of the rest mass, R of the damping coefficient
and K of the structure constant. Written in the form:
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ṗ � −2R

M
p − K

M
q, (9a)

q̇ � p, (9b)

Equation (9a) induces a two-dimensional manifold of “phase space” type (p, q)
in which p would correspond to a “momentum” type variable and q to a “position”
type variable. Equation (9b) corresponds only to a definition of the “momentum”.
However, Eqs. (9a) and (9b) do not represent a Hamiltonian system, since the associ-
ated matrix is not an involution (the matrix trace is not null). The statement becomes
more obvious if we put our system in its matrix form:

(
ṗ

q̇

)

�
(

−2 R
M − K

M

1 0

)(
p
q

)

. (10)

As long as M, R, K have constant values, this matrix equation evidences the
position of the energy and thus of the Hamiltonian (obviously only for the cases in
which the energy can be identified with the Hamiltonian). Indeed, from Eq. (10) we
can obtain:

1

2
M(pq̇ − q ṗ) � 1

2

(
Mp2 + 2Rpq + Kq2), (11)

which proves that the energy in its quadratic form (the right-hand side of Eq. 11) is
the variation rate of the physical action represented by the elementary area from the
“phase space”. We would like to showcase here the fact that the energy does not have
to obey the conservation laws such as the variation rate of the physical action. One
can ask now what could be the conservation laws, if they exist, for such a system.
To give an adequate answer we first observe that Eq. (11) can be written as a Riccati
type differential equation:

ν̇ + ν2 + 2λ̄ν + ω2
0 � 0 ,

ν � p

q
, λ̄ � R

M
, ω2

0 � K

M
. (12)

Furthermore, let us note that the Riccati type Eq. (12) always represents a Hamil-
tonian system describing harmonic oscillator type dynamic:

(
ṗ

q̇

)

�
⎛

⎝
− R

M − K
M

1 R
M

⎞

⎠

(
p
q

)

. (13)

This is a general characteristic describing the Riccati type equations and the
Hamiltonian’s dynamics [1, 19]. Equation (11) can be reobtained by building from
matrix Eq. (13) the 1-differential form of the elementary area from the “phase space”.
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Moreover, the same Eq. (11) can be directly integrated in order to describe the
conservation law [10]:

1

2

(
Mp2 + 2Rpq + Kq2) exp

{
2R√

MK − R2
arctan

(
Mp + Rq

q
√
MK − R2

)}
� const.

(14)

From here, it results that the energy is conserved in a classical meaning either
if R becomes null, or if the movement in the “phase space” is characterized by the
straight line passing though origin, having the slope defined by the ratio between R
and M.

Let us now note that Eq. (14) can be rewritten in the form:

Kq2

2
� const

1 + 2rw + w2
exp

{

2
r√

1 − r2
arctan

(
w

√
1 − r2

1 − rw

)}

.

w2 � Mp2

Kq2
, r2 � R

kM
(15)

This shows in an explicit manner that the potential energy, ignoring a constant
factor, depends on the ratio between the kinetic energy and the potential one of a
“local” oscillator. Moreover, the similarities between Eq. (15) and the distribution
function of a pre-established ensemble of “local oscillators” associated to the thermal
radiation [21]:

P(r, w) � 1

1 + 2rw + w2
exp

{
2r√
1 − r2

arctan

(
w

√
1 − r2

1 − rw

)}

, (16)

where r is the correlation coefficient andw2 � ε0
/
u is the ratio between the thermal

energy quanta, ε0, and the “reference energy”, u, can emphasis the statistic character
of the energy, namely the ratio of the two types of energies becomes more of a
statistic variable. The previously mentioned similarities work under the assumption
of quantization type procedure [21]:

P(r, w � 1) � 1

2(1 + r)
exp

{
2r√
1 − r2

arctan

(√
1 − r2

1 − r

)}

, (17)

It can be seen in Fig. 1 that the correlation of the statistic ensemble associated
with the local oscillators, previously defined [15, 21]:

exp
(
−ε0

u

)
≡ P(r, w � 1), (18)

induces, in the limit of r → 0, the action quanta:
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Fig. 1 “Quantization” procedure through “coherence” of all statistical ensembles associated with
“local oscillators”: dependences 3D (a) and contour plot (b)

ε0 � u ln 2. (19)

By expanding of the reference energy, u, in the form:

u � kBT � 2m0λ0(dt)
(2/DF )−1ν, (20)

Equation (19) becomes:

εν � kBT ln 2 � 2m0λ0(dt)
(2/DF )−1ν ln 2. (21)

The action quanta and its associated frequency, become proportional with the
temperature. In the previous relations kB is the Boltzmann constant, T is the char-
acteristic temperature of the thermal radiation, ν is the thermal radiation frequency
and m0 is the inertial mass of the “local oscillator”. Therefore, we can build now,
either fractal unitary physical theories, in the de Broglie sense [9], by identifying the
fractal physical action with the fractal entropy (like the thermodynamic of isolated
particle), or fractal theories based on the fractal information entropy in the Landauer
sense [17], regarding the efficiency as a quantum computer, imposed by the fractal
physical laws on the fractal computers [3] (particular on the quantum computers).
From this last statement, according to the second law of thermodynamics [20], from
a fractal perspective the fractal erasure of one fractal bit of fractal information [3]
requires, at a given scale resolution, a minimal fractal heat generation of kBT ln 2,
with T being the temperature at which the bit of fractal information can be erased.
Since the erasure is a logical function that does not have an inverse fractal single-
value, it must be associated with the fractal physical irreversibility and therefore
requires fractal heat dissipation. A fractal bit has one degree of freedom and so the
heat dissipation should be of the order of kBT . Now, since before the erasure a fractal
bit can be in any of the two possible states and after the fractal erasure it can only be



114 S. Irimiciuc et al.

in one fractal state, this implies a change in fractal information entropy of an amount
kBln2.

Let us now admit that in Eqs. (20) and (21) the fractalization is of stochastics type
and it is given by means of Markovian processes [20, 27], i.e. through the movement
of the plasma particles on Peano type curves in fractal dimension DF � 2. Then, at
Compton scale resolution λ � �/2m0, where è is the Planck reduced constant and
m0 is the rest mass of the “local oscillator”, Eq. (20) can be reduced to de Broglie
equation [9]:

u � kBT � hν. (22)

Equation (21) leads to the Landauer equation [17]:

εν � kBT ln 2 � hν ln 2. (23)

The equation describing the movement of the harmonic oscillation without damp-
ing is a stationary property consequence of the average value of the difference
between the kinetic energy and the potential one on the whole-time of the move-
ment. Since this difference define the Lagrangian of the movement, its integral in
between two moments of time will now define the action. Thus, the action will be
proportional with the average value of the difference between the two types of ener-
gies. Therefore, the movement of the damped harmonic oscillator distributes the two
types of energies in such manner that their mean is stationary during the entire time
of the movement.

Not the same considerations as the ones considered before can be applied in order
to obtain the Eq. (8). However, they can show the meaning of the statistical argues
in order to establish the type of fractalization by stochasticization. For Eq. (8) not
the temporal mean of the difference of the two types of energies is stationary, but the
temporal mean of the function:

L(q, q̇, t) � 1

2

(
mq̇2 − kq2

)
exp

(
2R

M
t

)
. (24)

In this case the action of the finite temporal interval given by the integral:

S
(
ti , t f

) �
ti∫

t f

(
Mq̇2 − kq2

)
exp

(
2R

M
t

)
dt, (25)

can be again interpreted as the temporal mean of the difference of the two types of
energies, but for the a priori statistics of the temporal domain given by an exponential
distribution. In the case of the “harmonic oscillator” this a priori distribution is simply
uniform. Therefore, one can state that bymeans of the Hamiltonian of themotion, the
equation of the harmonic oscillator is obtained as a consequence of the stationarity
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of a temporal statistic. The difference between them consists only in the a priori
measure of the temporal axis specific to the analyzed dynamics.

Let us observe that the motion Eq. (8) cannot be directly obtained through the
variational principle applied to the action (25), δS

(
ti , t f

) ≡ 0. Supplementary con-
straints are necessary at the limits:

(i) the variation of the coordinate at the time interval limits is null:

δq|ti � δq|t f ≡ 0, (26)

(ii) for the closed trajectories the limit values of the coordinates at the interval
limits must be the same:

q(ti ) � q
(
t f

)
, (27)

(iii) for the closed trajectories, but in the “phase space”, the values of the velocities
corresponding to the initial and final states should be the same:

δq̇(ti ) � δq̇
(
t f

)
. (28)

Even ifwe consider them, one canverify from thevariational principle perspective,
δS

(
ti , t f

) ≡ 0, that the Lagrangian is not unique. In other words, the Lagrangian
is defined up to an arbitrary function (the time-derivative of a function) with equal
values of the time limits intervals. In such context, it is necessary a gauge procedure
(of the Lagrangian uniqueness) by means of which the Lagrangian is reduced to a
perfect square. The Riccati type equation becomes then only the necessary gauge
condition, it also specifying the way in which the statistics of the harmonic oscillator
must be described.

The procedure [36] consists in the adding the following term to the Lagrangian
(24)

1

2

d

dt

[
wq2 exp

(
2
R

M
t

)]
, (29)

where w is a continuous function in time, imposing that the Lagrangian should be a
perfect square. The function variation given by the derivative operator is null, due to
the conditions presented in Eq. (27), thus the motion equation does not change. The
new Lagrangian, written in relevant coordinates, takes the form:

L(q̇, q, t) � M

2

(
q̇ +

w

M
q
)2

exp

(
2R

M
t

)
, (30)

with the condition that w needs to satisfy the following Riccati type equation:

ẇ − 1

M
w2 + 2

R

M
w − K � 0, (31)
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The Lagrangian depicted in Eq. (30) will be considered here as representing the
energy of the analyzed system. As before, there is a relationship between the Riccati
type Eq. (31) and the Hamiltonian dynamics. Henceforth we will find a similar
relation to that one presented in Eq. (13):

(
η̇

ξ̇

)

�
⎛

⎝
− R

M − K
M

1 R
M

⎞

⎠

(
η

ξ

)

, w � η

ξ
, (32)

This system is obviously a Hamiltonian one. Thus, we can identify the factors of
wwith the “phase space” coordinates. It is important to find themost general solution
of the Eq. (27). José Cariñena and Arturo Ramos presented a modern approach to
integrate a Riccati type equation [6]. For our case is enough to note that the complex
numbers:

w0 ≡ R + iM�, w∗
0 ≡ R − iM�, (33)

with

Ω2 � K

M
−

(
R

M

)2

, (34)

are the roots of the quadratic polynomial P(ν) � 1
M ν2 − 2 R

M ν + K � 0. Thus,
making first the homographic transformation:

z � w − w0

w − w∗
0

, (35)

it results by direct determination that z is a solution of the linear and homogeneous
first order equation:

ż � 2iΩz ∴ z(t) � z(0)e2iΩt . (36)

Hence, if we express the initial condition z(0) in a right manner, we can obtain
the general solution of Eq. (31) by applying an inverse transformation to Eq. (34).
We find:

w � w0 + w∗
0re

2iΩ(t−tr )

1 + re2iΩ(t−tr )
, (37)

where r and tr are two real constants which characterize the solution. Using Eq. (33),
we can put the same solution in real terms in the form:

z � R + MΩ

(
2r sin[2Ω(t − tr )]

1 + r2 + 2r cos[2Ω(t − tr )]
+ i

1 − r2

1 + r2 + 2r cos[2Ω(t − tr )]

)
.

(38)
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This relationship shows a frequency modulation through a Stoler transformation
[33] which leads to the complex representation of this parameter.

Let us note that in the quantum field theory the Stoler transformation it is related
to the creation/annihilation from the second quantization. In this work these trans-
formation specify the fact that the collisions processes which can be found in our
discharge plasma implicitly are seen as creation and annihilation of charged parti-
cles. Moreover the correlation with friction behaves as a frequency self-modulation
phenomena. This process acts as a calibration between the kinetic energy and the
potential one, as is usually the Lagrangian defined, which reduced this parameter to
a perfect square. The physical significance of the squared Lagrangian is that of a
fundamental physical unit that describes the inner structures of a complex physical
system, i.e. in our case the two structures that are both conditioning each other.

Through Eq. (31)w becomes a variation rate of the electrical charge which allows
us now to evaluate, in an indirect manner, the variation in the discharge current.
In the following we will present the evolution of the discharge current at various
resolution scales, in term of frequency, as function of time and oscillation frequency
that modulates the oscillations. The results are presented in Fig. 2.

The theoretical model proposed here attempts to explain the dynamics of charged
particles in a plasma discharge where there is a strong flux of electrons from one
plasma structure to another. Basically, the dynamics of the electrons is described
using a forced damped oscillating system, with the aim to investigate the response
of the global discharge current to different changes in resolution scale, oscillation
frequency and damping coefficient. Since our mathematical approach is sensitive
to the changes in the resolution scales, we plotted in Fig. 2 the 3D maps and the
corresponding contour plot representations of the discharge current as functions of
time and oscillation frequency for a fixed value of the damping constant of 0.1. We
observe that for small resolutions the current is described by a simple oscillatory
regime, while as the frequency resolution scale increases we notice the appearance
of some patterns. The patterns become denser and are foreshadowing the presence
of some modulation of the oscillating frequency.

The damping of the oscillatory state describes the losses through dissipative or
dispersivemechanisms. In order to study the effects induced by thesemechanisms on
the global current, we pin pointed two different oscillation frequency (characterizing
one the plasma structure), and observe the temporal response to different values of
the damping coefficient. The results can be seen in Fig. 3. We can identify compet-
ing oscillatory behaviors described by two oscillation frequencies with comparable
amplitudes.

The effect of the forced oscillations that can be attributed to one of the plasma
structures is presented in Fig. 4 where the discharge current for a fixed value of the
damping coefficient and various values of the forced oscillations is shown. The sys-
tem seemingly starts from a state described by period doubling, and goes through
frequency modulation as the values increases. The important aspect is that the oscil-
lation frequencies found for the current are not the ones induced through forced
oscillatory system. This means that the system, although forced to get on a specific
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Fig. 2 3D representation of the discharge current for different resolution scales in respect to the
oscillation frequency (a ~0–1, c ~0–20) and the corresponding contour plot representations (b and
d, respectively)

state, it will define its own dynamics influenced but not determined by the external
parameters.

3 Experimental Investigations of Space Charge Structures
Generated in a Spherical Cathode with an Orifice

The results obtained from the theoretical model described abovewere experimentally
confirmed by the results related to the nonlinear dynamics of a very complex space-
charge configuration appearing inside and around a spherical grid cathode with hole,
extensively described in [28, 34]. The experiments have been performed in a plasma
diode made by glass, where the anode is a rectangular plate of 25 cm × 20 cm size,
while the cathode is a spherical metallic grid with a diameter of 4 cm (with 0.5 mm
being the diameter of the metallic wires and 2 mm the mesh width) and with a small
hole with a diameter of about 6 mm on one side. The distance between cathode and
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Fig. 3 Discharge current
temporal traces for various
values of the damping
coefficient

anode is d � 25 cm. For experiments, Argon has been used as working gas, at the
pressure p � 7 × 10–2 mbar.

By modifying the discharge voltage, the complex space-charge configuration
inside and around the cathode passes through different stages. Thus, at low val-
ues of the discharge voltage, a diffuse spherical structure appears inside the cathode,
while a strong electrons beam escape from inside the cathode through the hole, pro-
ducing excitations and ionizations of the gas atoms along the direction of propagation
(see photo in Fig. 5a). In this stage, there is no breakdown of the discharge, but the
increasing of the current is due only to these electrons escaping from inside the cath-
ode through the hole, which produce local ionizations of the gas atoms along the
direction of propagation. The plasma bubble inside the cathode [29–32] appears due
to the electron-neutral impact excitations and ionizations processes, a high density
of electrons existing there because of the hollow cathode effect.

For high values of the discharge voltage, after the breakdown of the discharge, the
negative glow of the discharge can be observed in Fig. 5b, which is coupled with the
bubble inside the cathode through a fireball in form of an asymmetric dumbbell (let’s
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Fig. 4 Discharge current temporal traces for different values of the oscillation frequency at a
constant damping coefficient (r � 0.1)

Fig. 5 Photos of the complex space-charge configuration around and inside the cathode in different
stages of its development

call this as firedumbbell). The right part (towards the cathode) of this firedumbbell is
smaller and penetrates inside the cathode through the hole, while its left part (towards
the negative glow of the discharge) is larger and diffuse into the negative glow. In
this state interesting nonlinear dynamic phenomena were observed by investigating
the time series of the discharge current oscillations.



Theoretical Modeling of the Interaction Between Two … 121

Time series of the discharge current oscillations were recorded with a sampling
rate of 2.5 GS/s. Figure 6 shows such a time series, recorded for a discharge voltage
valueU � 289V. Figure 7 shows details from this time series of the discharge current
oscillations. Different dynamic states can be observed, many of them being similar

Fig. 6 Time series of the discharge current oscillations for the value of the discharge voltage U �
289 V

Fig. 7 Details of the discharge current oscillations from Fig. 6
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with those provided by the theoretical model described in the previous section. The
discharge current oscillations are the results of the nonlinear interaction between
the inner bubble and the firedumbbell. Both structures are in dynamic states, but
the oscillation frequencies depend on the current [25, 29–32]. The inner bubble
periodically release bunches of electrons, which act as forcing drive of the oscillating
firedumbbell. As the theoretical model predicted, the firedumbbell passes through
different dynamic state as the forcing frequency change because of the modification
of the discharge current value. In other words, the forcing frequency determines the
dynamic state, i.e. the discharge current oscillations, which, at their turn, modify
the frequency of the inner bubble dynamics, i.e. the forcing frequency. In this way,
a continuous self-modulation of the discharge current arises, as can be observed in
Fig. 6 and in details in Fig. 7.

4 Conclusion

Based on a non-differential approach, an explanation was proposed for the modu-
lated oscillation of plasma structured created in a spherical cathode with an orifice.
Within the framework of the model the particles move on fractal curves which might
lead to an oscillating state of the charged particles. The system evolves from a dou-
ble period state towards a chaotic signal but never reaching it. The evolution of the
system is “controlled” by the damping of the system and by the maximum frequency
reached during a particular simulated time-series. The experimental data depicting
the discharge plasma current for a constant positive potential applied on the spherical
cathode reveals an oscillating behavior. For a time-series, the oscillations are mod-
ulated with various frequencies, results also captured by the theoretical simulations.
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Some Applications of Fractional
Derivatives in Many-Particle Disordered
Large Systems

Z. Z. Alisultanov, A. M. Agalarov, A. A. Potapov
and G. B. Ragimkhanov

1 Introduction

Systems with Hamiltonians containing a nonquadratic degree of momentum have
always attracted the attention of researchers. This is due, first of all, to the fact that
in real systems, as a result of their imperfection, quadratic dependences of energy
on the pulse are almost never realized. On the other hand, a system with a complex
dispersion law can not be accurately described within the framework of the existing
theory. Therefore, in many cases resort to approximations, which consist in the fact
that the nonideal system of particles is represented as a gas of free quasiparticles
with a non-quadratic dependence of the energy on the momentum.

The nonquadratic dependence of energy on the pulse leads to quite interesting
effects. We indicate here some. It was also noted by Lifshits and Kaganov [1] that
in the case of a nonquadratic dependence of the electron energy on the pulse, the
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period of revolution of electrons in the magnetic field, and consequently the reso-
nant frequency, depend on the applied electric field. This effect, as the authors of
this work pointed out, can be used to analyze the shape of isoenergetic surfaces in
semiconductors. Interesting results were obtained in [2], where high-frequency elec-
tromagnetic phenomena in semiconductors with a nonquadratic dispersion law of
carriers were considered. In [3], electronic chaos in a one-dimensional superlattice
was considered. Chaoticity was due to the nonquadratic dispersion law. In [4], non-
linear electromagnetic waves were investigated in a stochastized electron gas with a
non-quadratic dependence of the energy on the momentum, and it was shown that a
deviation from the quadratic dependence leads to a slowing of the waves.

Another factor that strengthens interest in systems with a non-quadratic depen-
dence of energy on momentum is associated with the penetration into physics of
ideas of the so-called fractional calculus based on the mathematical apparatus of
integro-differentiation of fractional order [5, 6]. For systems described by differen-
tial equations of fractional order, the deviation from the quadratic dependence of the
energy on the momentum and the presence of nonlocality of the fractional-power
character are characteristic. Such a deviation leads, in particular, to probability distri-
butions of fractional-power type. These distributions turn out to be unusually stable
[7, 8]. The use of this apparatus makes it possible to interpret with great accuracy
complex experimental data for such phenomena as anomalous diffusion [6], heat
transfer in media with a complex structure [9], dispersion transport in semicon-
ductors [10], calculation of thermodynamic properties of surfaces [11]. In addition,
using this device, a number of new effects were predicted. For example, it was
shown in Refs. [12, 13] that it is possible to achieve comparatively large transition
temperatures into the superconducting state within the concept of fractons, which
makes interesting the apparatus of fractional integro-differentiation in the theory of
superconductivity. It should be noted that non-local interactions of power type have
been considered in Dyson’s papers as applied to phase transitions in ferromagnets
[14–16]. In [17], nonlocal interactions of this type in a crystal lattice were considered
and fractional kinetic equations were obtained. The features of fractional quantum
mechanics were considered in [18–21], where a study was made of systems with
Hamiltonians containing a non-integer degree of momentum. It should be noted that
Tarasov made a significant contribution to the generalization of equations to the case
of fractal media, as well as the investigation of systems described by equations in
fractional operators. For example, in [22–24] fractional statistical mechanics was
considered, fractional analogues of the Liouville and Bogolyubov equations were
obtained, as well as kinetic equations with fractional derivatives. Fractal analysis has
proved extremely useful in radiophysics [25] and in the analysis of complex images
[26, 27].

Here we consider some applications of fractional calculus. First, we consider the
possibility of introducing fractional time derivatives in the quantum theory of the
electromagnetic field. Further, we generalize the equation for the quantum Green’s
functions to the case of fractional derivatives and investigate somequantum-statistical
properties of the many-particle system [28, 29]. Finally, we will consider some
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specific problemsof plasmaphysics using an approach based ondeveloped formalism
[30].

2 The Liouville Fractional Derivative with Respect to Time
in Quantum Equations

Here an attempt is made to introduce fractional differentiation with respect to time
into the quantum theory of the electromagnetic field and fractional differentiation
with respect to the coordinate into the quantum theory of many particles. The starting
point of the research is the fractional Maxwell equations, which were introduced into
classical electrodynamics [31].

As fractional derivatives, we use the Riemann-Liouville and Caputo integro-
differential operators, which are defined as follows [32]

∂α
0τ f (τ ) � signn(τ − s)Dα−n

sτ

∂n f (τ )

∂τ n
,

where is the Riemann-Liouville operator, defined as

Dα
sτ f (τ ) �

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

sign(τ−s)
�(−α)

τ∫

s

f (τ ′)dτ ′
|τ−τ ′|α+1

f (τ )

signn(τ − s) ∂n

∂τ n Dα−n
sτ f (τ )

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

2.1 Representation of the Electromagnetic Field in the Form
of a Set of Fractal Oscillators

Between the electromagnetic field and classical mechanics there is a deep analogy
that underlies the quantization of a given field [33]. It is this analogy that shows that an
electromagneticfield canbe represented as an infinite number of harmonic oscillators.
It is of interest to carry out an appropriate investigation for the electromagnetic field
described by the fractional Maxwell equations.

It was shown in paper [31] that Maxwell’s fractional equations describe the elec-
tromagnetic field in media possessing the “memory” property, which consists in the
fact that the electromagnetic field in such media is dissipated according to a power
law. These results are based on completely realistic considerations and experimental
data. Such environments are conventionally called “fractal in time” in many works.
Wewill demonstrate an attempt to quantize the electromagnetic field in such “fractal”
media.

In [31] the following fractional Maxwell equations were obtained,
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rotE � −μ

t0
∂α
0τH,

rotH � ε

t0
∂α
0τE, (2.1)

Here, the dimensionless variable is related to the dimensional variable as, where
is some characteristic time of the process.

We shall consider a field of relatively low frequencies, at which variance can still
be neglected. Therefore, the dielectric and magnetic permeabilities in this case are
constants independent of time. The dependence of permeabilities on fields is also
neglected, i.e. the fields under consideration are sufficiently small.

The electric and magnetic fields can be represented in the form of an expansion
in standing waves. Following the usual theory of secondary quantization [33], we
represent the electric and magnetic fields in the form of sums

E �
∑

γ

ωγ qγ (t)eγ (r ), H �
∑

γ

pγ (t)hγ (r ). (2.2)

The index denotes both indices and, i.e. It includes the polarization of the wave
and the direction of the wave vector and, by definition, satisfy the orthonormalization
condition [33]

∫

eγ ′(r )eγ (r )d
3r � δγ ′γ ,

∫

hγ ′(r )hγ (r )d
3r � δγ ′γ ,

∫

eγ ′(r )hγ (r )d
3r � 0. (2.3a)

Tak�e cppavedlivo cootnoxenie [11, c. 14]) Equality [11, p. 14]

hγ (r ) � 1

ω
roteγ (r ) (2.3b)

Substituting the expressions (2.3b) into Eqs. (2.3a), we obtain the following equa-
tions,

∑

γ

ωγ qγ roteγ (r ) � −μ

t0

∑

γ

∂α
0τ pγ (τ )hγ (r ),

∑

γ

pγ rothγ (r ) � ε

t0

∑

γ

ωγ ∂α
0τqγ (τ )eγ (r ),

which, taking into account the relations (2.3a, 2.3b) between u, lead to the following
equations of motion
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∂α
0τ pγ � − t0

μ
ω2

γ qγ ,

∂α
0τqγ � t0

ε
pγ . (2.4)

Because values μ, ε and t0 in this case do not play a special role, then we write
further expressions in the system of units in which μ � ε � t0 � 1. For the
coordinate, then, we have the equation of motion

∂α
0τ ∂

α
0τqγ + ω2

γ qγ � 0.

This is the equation of motion for the “fractal” oscillator, studied in detail in [34,
35]. This means that the electromagnetic field described by the fractional Maxwell
equations can be represented as a collection of an infinite number of fractal oscilla-
tors. Because the fractional order of the derivative in the equation of motion of the
fractal oscillator is due to some attenuation of the oscillations inherent in dissipative
media, then the fractional order of the time derivative in Maxwell’s equations can be
interpreted as the presence of dissipation of the electromagnetic field in the medium.

2.2 The Heisenberg Equation

In quantum mechanics, the change in the operator of dynamic quantities with time
is described by the Heisenberg equation

−i
∂ F̂

∂t
�
[
H, F̂

]
, (2.5)

where H is the Hamiltonian of the quantum system under consideration.
When quantizing an electromagnetic field, it is shown that Maxwell’s equations

for the operators of electric and magnetic field strengths are something other than
the Heisenberg equations for the corresponding operators. For example,

−i
∂Ê
∂t

�
[
H, Ê

]
,

−i
∂Ĥ
∂t

�
[
H, Ĥ

]
,

where H is the Hamiltonian of the electromagnetic field.
We establish the Heisenberg equation for the electromagnetic field described by

the fractional Maxwell equations.
Thus, for the electric and magnetic field strength operators, we have the fractional

Maxwell Eqs. (3.1). Secondarily quantized electric andmagnetic fields are expressed
in terms of the operators of generalized coordinates and momenta as follows)
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Ê �
√

2

V

∑

νk

ωενk
{
q̂+

νk cos kr + q̂−
νk sin kr

}
,

Ĥ �
√

2

V

∑

νk

[nενk]
{− p̂+νk sin kr + p̂−

νk cos kr
}
. (2.6)

where ενk is a unit vector k describing the polarization state of a plane wave with a

wave vector. For example, for a circularly polarized wave ενk �
(
1/√2

)(
1 νi 0

)
,

ν � ±1, where. The Hamiltonian of the electromagnetic field has the following form

H � 1

2

∫ (
Ê2 + Ĥ 2

)
d3r � 1

2

∑

ν k

(
p̂+2νk + p̂−2

νk +
(
q̂+2

νk + q̂−2
νk

)
ω2
)

(2.7)

From the commutation relations between coordinates and momenta, we obtain
the following commutation relations

[
H, q̂±

νk

] � −i p̂+νk,
[
H, p̂±

νk

] � iω2q̂+
νk.

Then, we have commutators

[
H, Ê

]
� −i

√
2

V

∑

νk

ωενk
{
p̂+νk cos kr + p̂−

νk sin kr
}
,

[
H, Ĥ

]
� i

√
2

V

∑

νk

ω2[nενk]
{−q̂+

νk cos kr + q̂−
νk sin kr

}
. (2.8)

We also have the following expressions

rotĤ �
√

2

V

∑

νk

ωενk
{
p̂+νk cos kr + p̂−

νk sin kr
}
,

rotÊ �
√

2

V

∑

νk

ω2[nενk]
{−q̂+

νk cos kr + q̂−
νk sin kr

}
. (2.9)

Note that the last expressions are obtained in the most general form, regardless of
the order of the equations used. It can be seen from the expressions (2.8) and (2.9)
that

[
H, Ê

]
� −irotĤ,

[
H, Ĥ

]
� irotÊ.

If the Heisenberg Eq. (2.5) is valid, then we obtain the usual Maxwell equations,
i.e.
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∂Ê
∂t

� rotĤ,

∂Ĥ
∂t

� −rotÊ.

To obtain the fractional Maxwell equations, it is necessary to modify the Heisen-
berg equation,which in the usual form turns out, aswe see, to be not quite appropriate.
Thus, in the case of electromagnetic waves in “fractal” media, it is necessary to use
the fractional Heisenberg equation for their quantization, i.e.

−i∂α
0τ F̂ � [H, F̂]. (2.10)

Wenote one property of such aHeisenberg equation. It is known that the conserved
(time-independent) quantities commute with the Hamiltonian, i.e. The right-hand
side of Eq. (2.10) vanishes for such quantities. But on the other hand, the fractional
derivative of a constant, i.e. the left-hand side of Eq. (2.10) does not vanish. This
means that in this case it is pointless to talk about the conserved quantities. Those
we again come to the field dissipation in the medium.

2.3 Transition to the Schrödinger Picture

Unlike theHeisenberg representation, in the Schrödinger representation the operators
do not depend explicitly on time, and the state vectors in the first case do not depend
on time, but in the second they depend. Usually the transition from the Heisenberg
representation is carried out by a unitary transformation of the operator and the state
vector, i.e. in the Schrödinger representation

F̂s � U F̂U+, Φs � UΦ.

Then

−i
∂ F̂s

∂t
� −[H, F̂s] + [H, F̂s] � 0.

In this case the operator is time-independent. For the state vector we have

i
∂Φs

∂t
� i

∂U

∂t
Φ � HUΦ � HΦs,

those, we arrive at the Schrodinger equation.
It is obviously impossible to carry out the same operations using such a uni-

tary transformation with fractional derivatives. This is indicated by the fact that the
fractional derivative of the product is not calculated for ordinary derivatives, but is



132 Z. Z. Alisultanov et al.

an infinite series [36]. It is this fact that is very important, as we see, in the tran-
sition from one representation to another. Therefore, to assert that the fractional
Schrödinger equation has the form of the ordinary Schrödinger equation with the
derivative of the time derivative of the fractional derivative, it is impossible. Usually,
use the fractional Schrödinger equation in the form [37]

i∂α
0tΦs � HΦs .

But, as we have already said, this equation is generally incorrect in the case of
the media considered in this paper; It does not lead to the fractional Heisenberg
equations, which we obtained above independently.

2.4 The Schrödinger Equation for Field Operators

All of the above suggests the idea that the starting point in considering such “fractal”
quantum systems is the fractional Heisenberg equation in the form in which we
recorded it. Because we do not yet know how the fractional Schrödinger equation
looks like, thenwe cannot operate it in the form inwhich it is used in the literature.But
we can derive, using the fractional Heisenberg equation, the Schrödinger equation
for field operators, which is widely used in quantum statistics when considering
many-particle systems [38].

Let us consider amany-particle systemwith the presence of an interaction between
the particles and the external field. The Hamiltonian of such a system in the repre-
sentation of the second quantization is written as follows [38]

H � H(0) + V (1) + V (2) + . . . ,

where

H(0) � − 1

2m

∫

ψ̂+ψ̂d3r − μN ,

V (1) �
∫

ψ̂+U (1)ψ̂d3r ,

V (2) �
∫

ψ̂+ψ̂ ′U (2)ψ̂ψ̂ ′d3rd3r ′,

where H(0) is the Hamiltonian of free particles, V (1) the operator of their interaction
with the external field, U (1), V (2)—the operator of interaction of particles with each
other, …, μ is the chemical potential.

The fractional Heisenberg equation for field operators has the form

−i∂α
0τ ψ̂ � [H, ψ̂].
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Substituting the value instead of the Hamiltonian, we obtain the following, the
fractional Schrödinger equation for field operators

−i∂α
0τ ψ̂ �

(

− 1

2m
 − μ +U (1)

)

ψ̂ +
∫

ψ̂ ′+U (2)ψ̂ ′d3r ′ψ̂ + . . . . (2.11)

A very important method of quantum field theory, which is used in quantum
statistics, is the Green’s function method [38, 39]. Therefore, the generalization of
the equation for Green’s functions to the case of “fractal” systems is of great interest.
Using the fractional Heisenberg equation, one can obtain an equation for the Green’s
function

(

i∂α
0τ +

∇2
1

2m
−U (1)

)

G
(
1, 1′,U

) � δ(1 − 1′) ± i
∫

dt2dr2V (1 − 2)G2(12, 1
′2′,U ),

where 1 denotes the aggregate of variables r1τ1, 2 denotes r2τ2 etc.,G
(
1, 1′,U

)
is the

one-particle Green’s function, G2(12, 1′2′,U ) is the two-particle Green’s function,
the sign “±” is chosen depending on the type of particles of the system.

3 The Riesz Fractional Derivative with Respect
to the Spatial Coordinate in the Equation for the Green’s
Function

Fractional derivatives in equations written in space-time form in the transition to
Fourier transforms become power lawswith a fractional value of degree. In particular,
this leads to a fractional-power dispersion law. The idea of the fractional-power
dependence of energy on momentum is at the heart of [28, 29], where the question of
the possible method of introducing and physical interpretation of fractional integro-
differentiation in quantum statistical physics was considered in detail. This idea is
demonstrated here. The starting point of the research is the equation for the one-
particle Green’s function, written in fractional derivatives with respect to the spatial
coordinates in the form

[

i�
∂

∂t1
+ E0

�
α

pα
0

�
α/2
1

]

G(1, 1′) � δ(1 − 1′), (3.1)

where 1 means r1t1, E0, and p0—are the characteristic energy and momentum of
the system, �α/2

1 —is the fractional Riesz derivative, defined in the one-dimensional
case as [40]

α/2
x f (x) � 1

Γ (2 − α) cos
(

π
2 (2 − α)

)
∂2

∂x2

∞∫

−∞

f (ξ )dξ

|x − ξ |α−1 , (3.2)
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where 1 < α ≤ 2. The possibility of a nonstrict bound on top of the values taken by
the parameter was proved in [41]. The spectrum of the system described by Eq. (3.1),
as is easily shown, has the form.

Here we present the results of an investigation of the statistical properties of sys-
tems possessing the energy spectrum of a fractional-power type (3.2). The results
of this section are interesting for several reasons. First, here we discuss the physical
conditions that correspond to the appearance in the equation for the Green’s function
of the fractional Riesz operator. This will allow us to make certain conclusions to
researchers using equations in such operators, to some extent, formally. Secondly,
some important properties of systems with a power spectrum of a fractional-power
type are considered. The latter gives important information about the connection
between the phenomenological parameter-the order of the fractional derivative with
the natural parameters of the real statistical system (the interparticle interactionpoten-
tial, the van der Waals constant, the damping of excited states, etc.).

Let us discuss the possibility of the appearance in the equation for the Green’s
function of a fractional Riesz operator. Let us try to determine the explicit form of
the interparticle interaction potential in the many-particle system, leading to such an
operator in the basic equation. The general equation for the Green’s function in the
presence of an interaction between particles is written as follows [39]

(

i�
∂

∂t1
+ E0

�
2

p20
�1

)

G(1; 1′) −
−iβ∫

0

dt̄1dr̄1
∑

(r1t1; r̄1 t̄1)G(r̄1 t̄1; r1′ t1′) � δ(1 − 1′),

(3.3)

where there
∑

(1; 1′) is a mass operator that contains all information about the
interaction of particles with each other. Applying the Fourier transform to both sides
of Eq. (3.3), we obtain where there is a mass operator that contains all information
about the interaction of particleswith each other.Applying the Fourier transformation
to both sides of the Eq. (3.3), we obtainwhere is themass operator that contains all the
information about the interaction of particles with each other. Applying the Fourier
transform to both sides of Eq. (3.3), we obtain

[

ω − E0

p20
p2 −

∑
(p, ω)

]

G(p, ω) � 1. (3.4)

The spectrum of the system, according to (3.4), is defined asω(p) � (
E0/p20

)
p2+

Re
∑

(p, ω). The spectrum (2.2), as is easily seen, corresponds to the mass operator

∑
(p) � E0

(
p−α
0 |p|α − p−2

0 p2
)
.

On the other hand, the mass operator, in general, is defined by the expression [39]

∑
(p, ω)G(p, ω) � i

∫

drdte−i ωt
�
+ i pr

�

∫

dr2V (r1 − r2)G2(12, 1
′2′)t1�t2 . (3.5)
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or

E0
(
p−α
0 |p|α − p−2

0 p2
)

ω − E0 p
−α
0 |p|α � i

∫

drdte−i ωt
�
+ i pr

�

∫

dr2V (r1 − r2)G2(12, 1
′2′)t1�t2 ,

(3.6)

there G2(12, 1′2′) is a two-particle Green’s function, V (r ) is the interparticle inter-
action potential. Expression (3.6) determines those conditions, i.e. V (r ) the potential
V (r ) that leads to the spectrum (2.2). However, it is impossible to solve this exact
equation in the general case. We use the approximation for the mass operator. It can
be shown that the mass operator given above for the system under consideration does
not contain collisions of particles. Therefore, we confine ourselves to approximations
of lower order. In the Hartree-Fock approximation for a fermion gas we have

∑
HF (p) � n

∫

V (r )dr −
∫

dp′

(2π)3
V (p − p′)

exp
(
β
[
E0 p

−α
0 |p′|α − μ

])
+ 1

,

where β � 1/kT , μ is the chemical potential, is the particle concentration in the
translationally invariant system. It is obvious that the dependence of the energy on
the pulse can be modified only at the expense of the Fock part of the mass operator.
With this in mind, we write

E0
(
p−α
0 |p|α − p−2

0 p2
) � −

∫
d3 p′

(2π�)3
V (p − p′)

eβ[E0 p
−α
0 |p′ |α−μ] + 1

, (3.7)

The spectrum of such a system has the form ω(p) � E0 p
−α
0 |p|α + n

∫
V (r )dr .

Such a spectrum corresponds to an equation for the Green’s function
[

ω − E0 p
−α
0 |p|α − n

∫

V (r )dr

]

G(1, 1′) � δ(1 − 1′),

which after the Fourier transformation gives the following equation
[

i�
∂

∂t1
+ E0

�
α

pα
0

�
α/2
1 +

∫

V (r1 − r2)〈n(r2)〉dr2
]

G(1, 1′) � δ(1 − 1′),

We note that this equation differs from (3.1) by the presence of a Hartree term.
In [28], the Hartree term in the equation for the Green’s function was neglected. In
this paper, we will also follow this approximation, assuming, as usual, the presence
of a static background creating an equal field of the opposite sign.

We now turn to the clarification of the conditions that lead to the spectrum (2.2).
For this it is necessary to solve the integral Eq. (3.7) with respect to the potential V .
In other words, we solve the inverse spectral problem. Applying the transformation
to both sides of Eq. (3.7) of Fourier, we obtain



136 Z. Z. Alisultanov et al.

V (r) �
E0
∫

dDk
(2π)D

(
k−2
0 k2 − k−α

0 |k|α)e−ikr

∫
dDk

(2π)D
e−ikr

eβ[E0k−α
0 |k|α−μ]+1

, (3.8)

where we went to the variables k � p/�, V (r ) � ∫
dDk/(2π)DV (k)e−ikr , D is the

dimension of the system D � 1, 2, 3 under consideration. To determine the integral∫ |p|αe−i pξ pD−1dp, we use the usual method.

∫

|p|αe−i pξ pD−1dp �
∞∫

0

pα+D−1
(
ei pξ + e−i pξ

)
dp

� lim
δ→0

∞∫

0

pα+D−1
(
ei p(ξ+iδ) + e−i p(ξ−iδ)

)
dp.

Then for D � 3

V (r) �
E0

(
k−2
0

�(5)
r5 − k−α

0
�(α+D)

rα+3

)

∫
d3k

(2π)3
e−ikr

eβ[E0k−α
0 |k|α−μ]+1

The integral in the denominator, which we denote as K (r ) not being computed in
general form. Therefore, consider the case of low density, when e−βμ � 1. Then

K (r ) � eβμ

∫
d3k

(2π)3
e−βE0k

−α
0 |k|αe−ikr .

In the very rough approximation (in general, this is true only for α → 2), we put

this integral equal K (r ) � Aeβμe
− 1

βE0k
−α
0

|r |α
, where A is the constant appearing in

the integration. Thus, for the interaction potential (3.8) we obtain

V (r) � E0

A
e−βμe

1
βE0k

−α
0

|r |α
(

k−2
0

�(5)

r5
− k−α

0

�(α + 3)

rα+3

)

(3.9)

Wehaveobtained the potential that, in this approach, leads to a fractional derivative
of Riesz in the coordinate. At α � 2 this potential is zero. Let the system under
consideration be at a temperature T ∼ 10 ◦K. Let the mass of particles be on the
order of the proton mass . We take the characteristic energy equal
to E0 � 0.1 eV, and for the characteristic wave number, according to the formula
E0 � k20�

2/2M , we obtain k0 ≈ 1010M−1. In addition, suppose that e−βμ ≈ 20.
Then, the potential obtained in the case of a three-dimensional system behaves as
shown in the figure.

In terms of its physical meaning, the derivative of a fractional order in coordinate
means the inclusion of spatial correlations. As can be seen in Fig. 1, Indeed, the
transition to fractional derivatives is equivalent to introducing a pairwise interpar-
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Fig. 1 The interaction potential (3.9) for different values. For comparison, the small figure shows
the potential for the interatomic interaction of liquid helium (see, for example, [42])

ticle potential, leading to a nonideality of the gas. However, unlike the traditional
interparticle potential, which is purely potential in nature and does not depend on the
momentum, in this case we have a fundamentally different case. The point is that the
transition to a fractional derivative, leading to a fractional spectrum, means taking
into account the effective interaction between the particles, and, what is extremely
important, this interaction is actually implicitly dependent on the momentum. In this
connection we note that the consideration of the case in which the energy of interac-
tion between particles depends on the momentum in traditional statistical physics is
impossible in principle. Thus, the transition to fractional derivatives with respect to
the coordinate, in fact, means taking into account the dependence of the interaction
energy on the pulse, and thereby broadens the limits of applicability of statistical
physics, allowing also to take into account the dependence of the interaction energy
on the momenta.

Let us analyze this potential using the example of a system of charged particles. In
such a system, the interaction potential between particles is, in general, determined
according to the expression [43]

V (r ) �
∫

e2e−ikr dk

k2ε(k)
.

The quantity e2/k2 is the Fourier transform of the Coulomb interaction in a three-
dimensional system and ε(k) is the permittivity in a medium with spatial dispersion.
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Fig. 2 Interparticle interaction potential in a degenerate electron gas, which leads to the energy
spectrum of a fractional-power type formula after Eq. (3.7)

In a medium without dispersion, we have ε � const , and therefore V (r ) � q2/εr ,
we arrive at the Coulomb law. If the permittivity is of the form ε(k) � 1 + k20/k

2,
then we arrive at the Debye screening V (r ) � q2e−k0r/r , where k−1

0 is the Debye
radius. It is of interest to solve equation

Vα(r ) �
∫

q2e−ikr dk

k2εα(k)
,

where Vα(r ) is the expression (3.9), relative εα(k). In this case it can be asserted that
in the system of charged particles with a dielectric permittivity εα(k) the interparticle
potential is (3.9), which leads to a fractional-power spectrum, and, consequently, to
the fractional Riesz derivative in the Green’s function equation.

Let us consider the case of a degenerate electron gas. In this case it is necessary
to put

[
exp

(
β
[
E0 p

−α
0

∣
∣p′∣∣α − μ

])
+ 1
]−1 � �

(
EF − E0 p

−α
0 |p|α).

In addition, we set E0 � EF and p0 � pF . Taking this into account, we obtain
from (3.8)

Vα(r) � EFRe

{∫ kF
0 k2dk

(
k−2
F k2 − k−α

F kα
)
e−ikr

∫ kF
0 k2dke−ikr

}

, (3.10)

In Fig. 2, the dependence of the interparticle potential (3.10) on the distance
between the particles is shown. Energy is given in units of Fermi energy, and distance
in angstroms.

The interaction potential, as is easily seen from the figure, is a potential well
whose depth depends on the parameter α.

The interaction potential, as is easily seen from the figure, is a potential well
whose depth depends on the parameter.
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Another important conclusion is that the interaction in this case is of the nature
of attraction, and therefore it can be said that we are dealing with a phenomenon
analogous to the phenomenon of superconductivity, in which electrons, due to the
exchange of phonons, begin to attract and form Cooper pairs. In addition, in this
case, the intensity of the electron-electron attraction is a function of the parameter
α. Apparently, the following effect should be realized in such a system. At a certain
temperature in the system under consideration, the electrons are localized in the
potential well shown in the figure. The transition to such a state is called an f-
transition. The temperature of the f-transition is obviously determined by the depth
of the well, which in turn depends on the parameter α. Thus, for the transition
temperature we have U (α) � kBT f . Let us make some estimates. For the value
α � 1.9, the depth of the well is of the order U (α � 1.9) � 0.01�B Hence we find
that for this case T f ≈ 100K . Similarly, for a value α � 1.7, for example, we get
T f ≈ 400K .

We consider the question of the equation of the state of a gas (for definite-
ness we take a Fermi gas) having the spectrum (2.2), and, respectively, described
by Eq. (3.1). The Fermi distribution for such a gas has the form nα(β, p) �
(exp[β(|p|α − μ)] + 1)−1, where a system of units is used, in which the constants
that are unessential at this stage are unity, i.e. E0 � 1, p0 � 1. The equation of state
for a system with such a distribution was obtained in [28]. In this work, to derive the
equation of state, the relation was used dP � ndμ, where P is the pressure. Then
it was differentiated nα(β, p) to find the differential of the chemical potential. The
main consideration used in [28] when performing such actions on a function nα(β, p)
is as follows. The parameter α implicitly contains an effective interaction between
the particles. This interaction, naturally, is determined by the concentration of the
particles. Therefore, when differentiating, one should keep in mind that the parame-
ter α is not a constant value. This parameter is a density functional. This means that
this parameter also requires differentiation. In a sense, these considerations are very
similar to similar statements of the Fermi-liquid theory. Indeed, in the latter case
the distribution is written as n(β, p) � (exp[β(ε(p) − μ)] + 1)−1 where ε(p) is the
quasiparticle energy, which in turn is a functional of the density, i.e. ε � ε(n, p).
With the help of such considerations, a state equation for a Fermi system possessing
an energy spectrum of a fractional-power type

P � 1

β
n + 2

1

β
eβμ

∫
d3 p

(2π )3

(
1 − e−β(p2−|p|α)

)
e−β|p|α , (3.11)

where n is the concentration of the ideal gas (at α � 2). It is not difficult, with the
help of the same arguments, to obtain the equation of state for a Bose gas.

Equation (3.11) shows that the power law of dispersion leads, in the final analysis,
to the appearance of some additional pressure in the equation of state, that is, in fact,
takes into account the interaction between the particles. The distribution function
that determines this additional pressure is essentially the Weibull distribution (the
stretched exponent), which is closely related to the fractal properties of the system
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[44]. This additional pressure is zero when u and we arrive at the equation of state
of an ideal gas.

Let us investigate Eq. (3.11). As it was said, this equation describes the gas of
interacting fermions. Let us try to make some general remarks on the nature of this
interaction through more familiar approaches. Equation (3.11), written in the form

P − Iα � N

V
kT, (3.12)

where Iα � 2β−1eβμ
∫
d3 p/(2π )3

(
1 − e−β(p2−|p|α)

)
e−β|p|α it is very similar to

the Van der Waals equation, which, however, does not contain information on the
finiteness of the particle sizes. This is due to the fact that the approximation considered
does not take into account the collisions and the fact that the particles can not penetrate
into each other. If we neglect the finite particle size effects, then the van der Waals
equation can be written as

P − n2a � N

V
kT,

Comparing this equation with Eq. (3.12), we obtain

n2a � 2
1

β
eβμ

∫
d3 p

(2π )3

(
1 − e−β(p2−|p|α)

)
e−β|p|α .

In order to obtain an expression for the chemical potential, we resort to an
approximation, namely, we use the expression for the chemical potential of a Boltz-
mann ideal gas. This approximation is justified in many cases [45]. The chemical
potential of a Boltzmann gas is, to within insignificant constants, a value equal to
μ � β−1 ln

[
nβ3/2

]
[45]. Then we have

na � 2β1/ 2
∫

d3 p

(2π )3

(
1 − e−β(p2−|p|α)

)
e−β|p|α .

For specific calculations, it is necessary to go to dimensional quantities. In dimen-
sion variables, the integral is written as

Iα � 2
1

β
eβμ

∫
d3k

(2π )3

(
1 − e−βE0(k−2

0 k2−k−α
0 |k|α)

)
e−βE0k

−α
0 |k|α ,

where k � p/�. The chemical potential of a Boltzmann gas in dimensional variables

has the form μ � β−1 ln
[
n/2

(
2π�

2m−1β
)3/2

]
[45]. For the Vander Waals constant,

therefore, we obtain the following expression relating this constant to the parameter
α
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Fig. 3 Dependence of the van der Waals constant a on the parameter α. When constructing curves,
it is conventionally assumed that β−1/n(π )3/2 � 1

a � β1/2

n

(
2π�

2

m

)3/2

×
∫

d3k

(2π )3

(
1 − e−βE0(k−2

0 k2−k−α
0 |k|α)

)
e−βE0k

−α
0 |k|α (3.13)

This ratio is valuable from the point of view of the possibility of describing real
systems by the method of fractional integro-differentiation, which is carried out with
the help of Eq. (3.1). In Fig. 3, this dependence is shown.

Each value of the van der Waals constant is associated with a single value of the
parameter α. Those systems with different ones can be described by the equation of
state (3.12) with a parameter α corresponding to this a.

Let us consider with the same approach the problem of electron-phonon interac-
tion. Themodel that takes into account the electron-phonon interaction is constructed
on the basis of the quadratic dependence of the energy on the momentum and gives
the interaction amplitude for the interaction amplitude [46]

Φ(q) ∼ q1/2.

However, this model does not take into account all the details and various mech-
anisms of electron-phonon interaction [47–49] and, in order to improve the coinci-
dences with the experimental data, modify this function, namely, change the degree
of dependence on the pulse already at a purely phenomenological level [46]. It is
of interest to consider the fractional-differential model of the electron-phonon inter-
action. In doing so, we use the elementary approach to this problem, carried out in
[46].

Consider a system of interacting ions and electrons. The ions are located at the
nodes of the crystal lattice, and the electrons are considered to be free to a certain
degree of accuracy. The starting point of the discussion is the fractional equation for
the Green’s function (1). As was said above, the systems described by such equations
possess the spectrum formula after Eq. (3.7). Taking this into account, the total energy
for such systems can be written in the form
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E � |p|α +U (r ) (3.14)

U (r )—the potential energy of ions, or in dimensional variables

E � q2−α
0

2M
|q|α +U (r ) (3.15)

Usually, ions are represented as harmonic oscillators. In this case, when the depen-
dence on the pulse becomes fractional power, it is more likely to expect a deviation
from the harmonic law. In connection with this, we consider this problem in a general
form, following [21], where a class of Hamiltonians of the type

H � |p|α|r |α′
+ |r |β |p|β ′

Consider the case when α′ � β ′ � 0. Then we have the following Hamiltonian

H � |p|α + |r |β

Taking this into account, we rewrite the expression for the total energy in the form

E � q2−α
0

2M
|q|α +

k

2
|r |β (3.16)

where k is the elastic constant. With allowance for (3.16), the total energy of the
wave of deviations of the lattice sites from the equilibrium position is represented in
the form

E �
∫

q2−α
0

2M
n

∣
∣
∣
∣M

∂ξq

∂t

∣
∣
∣
∣

α

dr +
∫

k

2

∣
∣ξq

∣
∣βdr

The wave of deviations of the nodes �ξq from the equilibrium position is related
to the gradient by the relation

ξq � ξq (r + a) − ξq (r ) � a
∂ξq

∂r

With this in mind, we finally obtain

E � q2−α
0

2
nMα−1

∫ ∣
∣
∣
∣
∂ξq

∂t

∣
∣
∣
∣

α

dr +
∫

χ

2

∣
∣
∣
∣
∂ξq

∂r

∣
∣
∣
∣

β

dr (3.17)

If we represent a wave of deviations in the form of a standard exponent

ξq � Ab+qe
−iωt+ i

�
qr
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where A is the amplitude of the deviations, b+q is the phonon production operator,
then

E � q2−α
0

2
nMα−1

(
Ab+q

)α
ωαV +

χ

2

(q

�

)β(
Ab+q

)β
V

Because the phonon energy �ω is, and also �ω � cq and c2 � χ/nM , then
we obtain an expression that determines the dependence of the amplitude on the
momentum

cq � q2−α
0

2
nMα−1

(
Ab+q

)α
(cq)αV

+
c2nM

2

(q

�

)β(
Ab+q

)β
V (3.18)

In the case of a quadratic Hamiltonian, i.e. α � β � 2 when we obtain a known
result [46]

A(q) � γ
1√

nMcqV
,

where γ � �/b+q .
Let us consider the case α � β. In this case, from (3.18) we obtain a more general

dependence of the interaction amplitude on the momentum

A(q) � γ ′(MnVcα−1
)−1/α

q
1−α
α ,

where γ ′ � [
1
2

(
q2−α
0 Mα−2 + c2−α

)]−1/α �

b+q
.

The amplitude of the electron-phonon interaction is determined by the amplitude
of the wave of deviation ξq of the perturbed density of the lattice sites nq(r, t) from
the equilibrium value n, nq(r, t) � n(r, t) − n � n. The latter is proportional to the
gradient ∂ξq/∂r . Then we get

nq(r, t) � const
(
MnVcα−1

)−1/α
q

1
α

(

b+q exp

(

−iωt +
i

�
qr

)

+ k.c.

)

Taking this expression into account for the Hamiltonian of the interaction of the
electron gas with the resulting lattice vibration,

Hef �
∑

pq

const · q 1
α

(
a+p−qapb

+
q + a+p+qapbq

)

which, supplemented by the Hamiltonian of free particles, is a well-known expres-
sion of the Frohlich Hamiltonian, but with the amplitude of the electron-phonon
interaction
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Φ(q) ∼ q1/α. (3.19)

Expression (3.18) is a wide class of dependencies A(q), which allows one to
interpret the results of real experiments by varying only with a parameter α.

Different models of electron-phonon interaction are particularly interesting in the
theory of superconductivity. Indeed, the amplitude of the electron-phonon interac-
tion is an important parameter that determines the critical temperature of the tran-
sition to the superconducting state. It is known that the classical Bardeen-Cooper-
Schrieffer (BCS) superconductivity theory, being an idealized model, can not ade-
quately describe the properties of all conventional superconductors, allowing serious
errors, for example, in calculating magnesium diboride parameters-an unusual com-
poundhaving a very high transition temperature. Theproblem is that theBCSdoes not
extend to the case of a strong electron-phonon interaction. The “improved” version of
the BCS, proposed by Gerasim Eliashberg, allows obtaining more accurate formulas
for calculating the critical temperature. For example, physicists solved the Eliashberg
equations immediately in two exotic cases: for pure and for doped graphene. Since
in pure graphene the Fermi level lies at the Dirac point [50], here one must speak of
a “multi-zone” pairing, in which particles from both bands participate [51]. Doping
graphene implies a muchmore effective pairing, in which particles belonging to only
one zone participate. In connection with the foregoing, we can conclude that in the
case of graphene and other objects where the conditions for high-temperature super-
conductivity are realized, it is of interest to apply the fractional differential model
of superconductivity, the parameter of which will be the more general expression
(2.19), from which it follows that the amplitude of the electron-phonon interaction
at more (and in the case, the maximum) than in the case. Some attempts to describe
high-temperature superconductivity using the spectrum formula after Eq. (3.7) were
undertaken in Refs [12, 52].

Thus, taking this and the previous section into account, we can write the following
general fractional equation for the Green’s function

(
i

t0
∂α
0τ + E0

�
β

pβ

0


β/ 2
1 −U (1)

)

G
(
1, 1′,U

)

� δ(1 − 1′) ± i
∫

dt2dr2V (1 − 2)G2(12, 1
′2′,U ) (3.20)

4 Fractional Analysis of Instability in a Gas Discharge

Progress in the study of the gas discharge physics under high pressure is largely
determined by knowledge of the physical properties of the discharge. Especially,
this corresponds the initial stage, which in gases and liquids is accompanied by
the generation and propagation of specific ionization waves. The wide practical
application of gas discharge various forms stimulates studies of their spatial structure.
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In [53], the initial stage of the development of the ionization wave front instability
due to the multiplication of electrons of low background density is considered. An
expression for the growth rate of small perturbations is found. It is shown that the
propagation front is unstable with respect to small perturbations forming protrusions
or dips. The growth rate of the instability can be defined as a function of the reduced
field strength that is universal for a given gas.

In [54], the microstructure of the current channel was experimentally detected in
the breakdown of homogeneous air gaps by voltage pulses of the nanosecond range
in electric fields insufficient to form of a streamer. As a mechanism for the formation
of a microstructure, the development of the instability of the ionization process in
the avalanche stage is proposed, that leads to the formation of a self-similar spatial
structure. It is shown that the microstructure of streamer discharges in homogeneous
gaps can also be explained within the framework of the proposed model.

There is a large number of both experimental and theoretical studies on the stability
of ionization fronts. Nevertheless, there is no unified theory of the development of
instability. The latter is due to the complexity of accounting for all important factors
affecting processes. Thus, the development of new effective approaches in this field
of research is extremely important.

Finally, we note following. As is well known, the turbulent state is natural for a
plasma. In this state, the plasma obeys the laws of anomalous diffusion [55–59]. In
such a state, the mean free paths of particles are power functions [59]. This can lead
to a fractional equation for the distribution function (details see in [6]).

It should be noted that fractional derivatives cannot be used on fractal since it
cannot be considered a linear (vector) space. A mathematically correct approach is
given in the books [60, 61].

Here, using an approach based on the kinetic equation of fractional order on the
time variable, two types of instability in a gas discharge are investigated: the insta-
bility of the electron avalanche and the sticking instability in a nonself-maintained
discharge.

4.1 Instability of an Electron Avalanche in a Gas Discharge

A standard approach to investigating the stability of an avalanche is based on the use
of the kinetic equation for the electron concentration in the avalanche (an adiabatic
approximation is used when ion motion is neglected)

∂n

∂t
� αυdrn − υdr

∂n

∂z
+ Den. (4.1)

where α is the Townsend ionization coefficient, υdr is the electron drift velocity, De

is the electron diffusion coefficient, the axisOz is directed along the field. In Eq. (3.1)
we pass to the Riemann-Liouville fractional derivatives [3]
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∂
β
−∞x f (x) � 1

Γ (1 − {β})
∂ [β]+1

∂x [β]+1

x∫

−∞

f (ξ )dξ

(x − ξ){β} . (4.2)

where [β] is the integer part of β and 0 ≤ {β} < 1 is the fractional part of β. (Note
that the fractional derivative (4.2) is also called the Liouville derivative [19]). Then

1

t0
∂

β
−∞τn � αυdrn − υdr

∂n

∂z
+ Den, (4.3)

where τ � t/t0 is a dimensionless time, t0 is the some characteristic time. The
problem that solving in the present paper is a rare case when the parameter t0 is not
included in the final result. In general, as t0 one can use, for example, the characteristic
ionization time.Wewill be sought the solution in a standard way in a following form:
n ∝ exp(−iωτ + ikr). Then1

1

t0
(−iω)β � αυdr − iυdr kz − Dek

2, (4.4)

where k�2π /λ, λ is a characteristic size of the disturbance inhomogeneity. Next,
we note that

(−iω)β � |ω|β exp

(

−iβ
π

2
+ iβ arctan

Imω

Reω

)

(4.5)

Then

|ω|β cosβ

(

arctan
Imω

Reω
− π

2

)

� t0
(
αυdr − Dek

2
)
,

|ω|β sin β

(

arctan
Imω

Reω
− π

2

)

� −t0υdr kz .

The last equations give

Imω � t
1
β

0

((
αυdr − Dek

2
)2

+ υ2
dr k

2
z

) 1
2β

× cos

(
1

β
arctan

υdr kz
αυdr − Dek2

)

(4.6)

The condition for the onset of instability is the following inequality

Imω ≥ 0 (4.7)

Then condition (4.7) can be rewritten in the form

1We used the property of the fractional Riemann-Liouville derivative: ∂β
−∞xe

ax � aβeax .
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((
αυdr − Dek

2)2 + υ2
dr k

2
z

) 1
2β
cos

(
1

β
arctan

υdr kz
αυdr − Dek2

)

≥ 0, (4.8)

or

cos

(
1

β
arctan

υdr kz
αυdr − Dek2

)

≥ 0 (4.9)

or

αυdr − Dek
2 ≥ υdr kz

tan βπ

2

(4.10)

When β � 1 we obtain the usual condition

αυdr − Dek
2 ≥ 0. (4.11)

Let us find the values of k, under which condition (4.10) is met. Firstly, we note
that kz � k cos θ . We consider the directed discharge and we neglect reflections
back. This means that 0 < θ < π/2. Then Eq. (4.10) can be rewritten as follow

αυdr − Dek
2 − υdr k cos θ

tan βπ

2

� 0. (4.12)

The solutions of Eq. (4.12) have the form

k1,2 � −υdr cos θ ± √
D

2De tan
βπ

2

, (4.13)

where

D � (υdr cos θ)2 + 4 tan2
βπ

2
αυdr De. (4.14)

It is clear from (4.13) that the solution when k2 < 0 has no physical meaning.
Therefore, this solution should be discarded. Then

k ≤ −υdr cos θ +
√
D

2De tan
βπ

2

. (4.15)

For the length λ, we obtain the condition

λ ≥ 4πDe tan
βπ

2

−υdr cos θ +
√
D

. (4.16)

For β → 1 (or any odd number) we have the condition
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λ ≥ 2π
√
De√

αυdr
, (4.17)

completely coinciding with the well-known [1].
For β → 2 (or any even number) we have the condition λ ≥ ∞, i.e. instability

vanish completely.
Let us analyze the obtained result. Firstly, we note that condition (4.16), unlike

(4.17), is anisotropic with respect to the field direction. In other words, the instability
condition that is satisfied for a given set of values of the angle θ will not be satisfied
for some other values of this angle. Obviously, such anisotropy occurs when the
ionization wave front is not flat. Indeed, in the case of a plane front θ =0. It is
interesting that the anisotropy effect occurs when the equation is used in fractional
derivatives and vanishes when β → 1. Further, the right-hand side of (4.16) in the
angle interval (0, π/2) is a decreasing function of θ . I.e. the critical value of λ, at
which an instability arises, is greater along the electric field than across. Finally, the
instability condition includes an additional parameter β, but this condition does not
contain a constant t0. The latter is extremely important, because in most cases of
using fractional analysis the real meaning of such a parameter is one of the main
problems (Fig. 4).

4.2 Adherent Instability in a Non-self-sustaining Discharge

Let us consider the equation for the density of secondary electrons ne(t) in a discharge
controlled by an electron beam.

dne
dt

� S − βr ne − αn2e . (4.18)

Here S is the formation rate of secondary electrons during the passage of the
primary electron beam,which is assumed to be constant,βr is the adhesion coefficient
(adhesion of electrons to neutral particles), and α is the electron-ion recombination
coefficient.

In Eq. (4.18) we pass to the fractional derivatives

1

t0
∂

β
−∞τne � S − βr ne − αn2e . (4.19)

Let us suppose that in the system there are local fluctuations leading to perturbation
δne and δE (E—external dielectric field intensity) in some area

⎧
⎪⎨

⎪⎩

ne → ne0 + δne
E → E + δE

βr (E) → βr (E + δE) ≈ βr (E) + (∂βr/∂E)δE

. (4.20)
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Fig. 4 Dependence of the
instability parameter: a on
the order of the fractional
derivative for different
values of the angle θ, b on
the angle θ for different
values of the order of the
fractional derivative
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Here it is necessary to clarify what state corresponds to the quantity ne0? Usually,
this value corresponds to the equilibriumstate, so thatne0 does not dependon time, i.e.
dne0/dt � 0. However, in the case of a system described by an equation in fractional
derivatives, one can not speak of an equilibrium state. Indeed, ∂

β
−∞τne0 �� 0. This

means that we are dealing with an unclosed system and we cannot speak of any
conserved quantities or stationary processes. Therefore, by ne0 we mean the electron
concentration at the initial instant of time.

Substituting (4.20) into Eq. (4.19), we obtain:

1

t0
∂

β
−∞τ (ne0 + δne) � S −

(

βr (E) +
∂βr

∂E
δE

)

(ne0 + δne) − α(ne0 + δne)
2, (4.21)

Taking into consideration the fact that
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1

t0
∂

β
−∞τne0 � S − βr ne0 − αn2e0, (4.22)

we get

1

t0
∂

β
−∞τne � −βrδne − ∂βr

∂E
δEne0 − ∂βr

∂E
δEδne − 2αne0δne − αδn2e . (4.23)

By linearizing the last equation, we get

1

t0
∂

β
−∞τne � −βrδne − ∂βr

∂E
δEne0 − 2αne0δne. (4.24)

To simplify the equation obtained, we use the following relation, which is valid
for small deviations δE and δne

(ne0 + δne)(E + δE) ≈ ne0E . (4.25)

It follows

Eδne0 � −ne0δE . (4.26)

We note the general relationship between δE and δne0 can be obtained from
physical considerations

δE � δE

δne0
δne0,

where δE/δne0 < 0 that may be explained by dielectric effect—increasing of carrier
number leads to decreasing of electric field due to screening effect. In any case, this
does not affect on our final result.

Taking (4.26) into account, Eq. (4.24) takes the form

1

t0
∂

β
−∞τ (δne) � E

∂βr

∂E
δne − βrδne − 2αne0δne. (4.27)

We now assume that the time dependence of the perturbation

δne(t) � δne(0)e
−iωt . (4.28)

We substitute (4.28) into (4.27). Then we get

ω � i

[

t0

(

E
∂βr

∂E
− βr − 2αne0

)]1/β

. (4.29)
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The condition for the onset of instability is inequality (4.6). Thus, the problem
is reduced to determining the imaginary part of the Eq. (4.29) and investigating this
part by condition (4.6).

Here two cases are possible: (1) E ∂βr

∂E −βr−2αne0 > 0 and (2)E ∂βr

∂E −βr−2αne0 <

0.
In the first case we have Imω ≥ 0. Thus, the condition E ∂βr

∂E −βr − 2αne0 > 0 is
a condition for the development of instability, but it is not the only. Let us consider
the second condition. In this case we rewrite (4.2) in the form

ω � i(−1)β
[

t0

(

βr + 2αne0 − E
∂βr

∂E

)]1/β

. (4.30)

The expression in square brackets is positive by condition (3.7). From (4.30) we
have

Imω � sin
π

2

(
2

β
+ 1

)[

t0

(

βr + 2αne0 − E
∂βr

∂E

)]1/β

≥ 0, (4.31)

or

sin
π

2

(
2

β
+ 1

)

≥ 0. (4.32)

Thus, if condition (4.32) is satisfied, instability develops. If condition (4.32) is
not satisfied, then the instability develops only under condition (1). It is interesting
that condition (4.32) is a function of a single parameter β, while condition (1) does
not depend on this parameter.

The results obtained are of great interest in interpreting real experiments. Within
the framework of the existing theory, it is very difficult to take into account many
important factors, for example, multiparticle effects or collective phenomena. The
latter can be included in the theory by means of a parameter β. In addition, it can be
assumed that the process of successive decay of avalanches considered in the work
leads to the formation of a fractal structure of the conducting channels. Then, based
on the connection between fractal geometry and fractional derivatives [6, 55, 56],
it can be said that subsequent processes occurring on this fractal set are described
using a fractional derivative, since some of the states in space are excluded for the
discharge current to flow.

5 Conclusion

From the discussion above, we can conclude that the appearance of fractional oper-
ators in the equation for the Green’s function is related with the non-ideality of
the system. The consideration was carried in the general form. It can be applied to
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both fermionic and bosonic systems. The most interesting, in our opinion, is the
application of a fractional-differential approach to a phonon gas. As is known, the
nonideality of the phonon gas, which is related to the complexity of the crystal
structure, leads to anharmonicity, with which many interesting effects are related.
The theory of anharmonicity of a fractional character has some peculiarities and
can be of great interest in describing real experimental results. For example, the
elementary calculation shows that the fractional-differential approach gives a wide
class of temperature-dependence of heat capacity. At the same time, it is known
that the temperature dependence of the specific heat for complex crystals is not a
single-valued function, but is determined by the type of crystal and the structure.
The latter circumstance is practically not described by the existing theory. Thus, the
fractional-differential approach in the theory of anharmonic effects in crystals is of
great interest.

The results obtained are of great interest in interpreting real experiments. Within
the framework of the existing theory, it is very difficult to take into account many
important factors, for example, many-body effects or collective phenomena. The
latter can be included in the theory by means of a parameter. In addition, it can be
assumed that the process of successive decay of avalanches considered in the work
leads to the formation of a fractal structure of the conducting channels. Then, based
on the connection between fractal geometry and fractional derivatives [6, 36, 55, 56],
it can be said that subsequent processes occurring on this fractal set are described
using a fractional derivative, since some of the states in space are excluded for the
discharge current to flow.

Finally, we note that most physical models (classical and quantum)with fractional
derivatives are currently at the stage of intensive development. Problems arise even
at the stage of choosing one or another fractional operator. In general, preference
is given to those models that most adequately describe the available experimental
data. The specificity associated with fractional derivatives can manifest itself in the
stochastic dynamics and kinetics of large systems. It is logical to assume that simul-
taneous introduction of fractional derivatives with respect to time and coordinate in
the classical and quantum cases is required. However, these issues require further
development!
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Similarities Between Dynamics at Atomic
and Cosmological Scales

Maricel Agop, Alina Gavriluţ and Gabriel Crumpei

1 On a Multifractal Theory of Motion
in a Non-differentiable Space

Since the non-differentiability becomes a fundamental property of the motions space
[1–4], a correspondence between the interaction processes and multifractality of the
motion trajectories can be established. Then, for all scale resolutions, the geodesics
equations (in the form of the Schrödinger equation of fractal type) and some appli-
cations (similarities between dynamics at atomic and cosmic scales) are obtained.

2 Consequences of Non-differentiability
on a Space Manifold

Let us assume that the motions of the physical systems take place on continuous
but non-differentiable curves (fractal curves), so that the following consequences are
resulting [5, 6]:
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Faculty of Mathematics, Alexandru Ioan Cuza University of Iaşi, Iaşi, Romania
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(i) Any continuous but non-differentiable curve of the physical systems is explic-
itly scale resolution δt dependent, i.e., its length tends to infinity when δt tends to
zero;

We mention that, mathematically speaking, a curve is non-differentiable if it
satisfies the Lebesgue theorem [1], i.e. its length becomes infinite when the scale
resolution goes to zero. Consequently, in this limit, a curve is as zig-zagged as one
can imagine. Thus, it exhibits the property of self-similarity in every one of its points,
which can be translated into a property of holography (every part reflects the whole)
[1]. This concept of holography can lead to new models for the evolution of cancer,
or new models of neural interactions etc.;

(ii) The physics of phenomena is related to the behavior of a set of functions
during the zoom operation of the scale resolution δt . Then, through the substitution
principle, δt will be identified with dt , i.e., δt ≡ dt and, consequently, it will be
considered as an independent variable. We reserve the notation dt for the usual time
as in the Hamiltonian physical system dynamics.

(iii) The physical system dynamics is described through fractal variables, i.e.,
functions depending on both the space coordinates and the scale resolution since
the differential time reflection invariance of any dynamical variable is broken. Then,
in any point of a physical system fractal curve, two derivatives of the variable field
Q(t, dt) can be defined:

d+Q(t, dt)

dt
= lim

Δt→0+

Q(t + Δt,Δt) − Q(t,Δt)

Δt
d−Q(t, dt)

dt
= lim

Δt→0−

Q(t,Δt) − Q(t − Δt,Δt)

Δt
(1)

The “+” sign corresponds to the physical system forward processes, while the
“−” sign correspond to the backwards ones;

(iv) The differential of the spatial coordinate field dXi (t, dt), by means of which
we can describe the physical system dynamics, is expressed as the sum of the two dif-
ferentials, one of them being scale resolution independent (differential part d±xi (t),
and the other one being scale resolution dependent (fractal part d±ξ i (t)), i.e.,

d±Xi (t, dt) = d±xi (t) + d±ξ i (t, dt); (2)

(v) The non-differentiable part of the spatial coordinate field, by means of which
we can describe the physical system dynamics, satisfies the fractal equation:

d±ξ i (t, dt) = λi
±(dt)1/DF (3)

where λi± are constant coefficients through which the fractalization type describing
the physical system dynamics is specified and DF defines the fractal dimension of
the physical system non-differentiable curve.
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In our opinion, physical systems processes imply dynamics on geodesics with
various fractal dimensions. The variety of these fractal dimensions of the physical
systems geodesics comes as a result of its structure. Precisely, for DF = 2, quantum
type processes are generated in a physical system. For DF < 2 correlative type
processes are induced, while for DF > 2 non-correlative type ones can be found -
for details see [5].

Because all the processes described here can take place simultaneously in the
dynamics of a physical system, it is thus necessary to consider the multi-fractal
behavior of physical structures (for details see [2–4]);

(vi) The differential time reflection invariance of any dynamical variable of the
physical system is recovered by combining the derivatives d+/dt and d−/dt in the
non-differentiable operator:

d̂

dt
= 1

2
(
d+ + d−

dt
) − i

2
(
d+ − d−

dt
) (4)

This is a natural result of the complex prolongation procedure applied to physical
system dynamics [7]. Applying now the non-differentiable operator to the spatial
coordinate field, by means of which we can describe the physical system dynamics,
yields the complex velocity field:

V̂ i = d̂ X i

dt
= V i

D − V i
F (5)

with

V i
D = 1

2

d+Xi + d−Xi

dt
, V i

F = 1

2

d+Xi − d−Xi

dt
(6)

The real part V i
D of the complex velocity field is differentiable and scale res-

olution independent (differentiable velocity field), while the imaginary one V i
F is

non-differentiable and scale resolution dependent (fractal velocity field).
(vii) In the absence of any external constraint, an infinite number of fractal curves

(geodesics) can be found relating any pair of points, and this is true on all scales of
the physical system dynamics. Then, in the fractal space of the physical system, all its
entities are substituted with the geodesics themselves so that any external constraint
can be interpreted as a selection of geodesics. The infinity of geodesics in the bundle,
their non-differentiability and the two values of the derivative imply a generalized
statistical fluid-like description (in what follows we shall call it a fractal fluid). Then,
the average values of the biological fractal fluid variables must be considered in the
previously mentioned sense, so the average of d±Xi is:

< d±Xi >≡ d±xi (7)

with
< d±ξ i >= 0 (8)
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The previous relation (8) implies that the average of the fractal fluctuations is null.
(viii) The fractal fluid dynamics can be described through a scale covariant deriva-

tive, the explicit form of which is obtained as follows. Let us consider that the non-
differentiable curves are immersed in a 3 -dimensional space and that Xi are the
spatial coordinate field of a point on the non-differentiable curve. We also consider
a variable field Q(Xi , t) and the following Taylor expansion up to the second order:

d±Q(Xi , t) = ∂t Qdt + ∂i Qd±Xi + 1

2
∂l∂k Qd±Xld±Xk (9)

These relations are valid in any point and more for the points Xi on the non-
differentiable curve which we have selected in (9). From here, the main forward and
backward values for fractal fluid variables from (9) become:

< d±Q >=< ∂t Qdt > + < ∂i Qd±Xi > +1

2
< ∂l∂k Qd±Xld±Xk > (10)

We suppose that the average values of the all variable field Q and its deriva-
tives coincide with themselves and the differentials d±Xi and dt are independent.
Therefore, the average of their products coincides with the product of averages.
Consequently, (10) becomes:

d±Q = ∂t Qdt + ∂i Q < d±Xi > +1

2
∂l∂k Q < d±Xld±Xk > (11)

Even the average value of d±ξ i is null, for the higher order of d±ξ i the situation
can still be different. Let us focus on the averages < d±ξ ld±ξ k >. Using (3) we can
write:

< d±ξ ld±ξ k > ±λl
±λk

±(dt)(2/DF )−1dt (12)

where we accepted that the sign+ corresponds to dt > 0 and the sign− corresponds
to dt < 0.

Then, (11) takes the form:

d±Q = ∂t Qdt + ∂i Q < d±Xi > +1

2
∂l∂k Qd±xld±xk

± 1

2
∂l∂k Q[λl

±λk
±(dt)(2/DF )−1dt] (13)

If we divide by dt and neglect the terms that contain differential factors (for
details, see the method from [6]) we obtain:

d±Q
dt

= ∂t Q + νi
±∂i Q ± 1

2
λl

±λk
±(dt)(2/DF )−1∂l∂k Q (14)

These relations also allow us to define the operators
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d±
dt

= ∂t + νi
±∂i ± 1

2
λl

±λk
±(dt)(2/DF )−1∂l∂k (15)

where

νi
+ = d+xi

dt
, νi

− = d−xi

dt

Under these circumstances, taking into account (4), (5) and (15), let us calculate
d̂/dt . It results:

d̂ Q

dt
= ∂t Q + V̂ i∂i Q + 1

4
(dt)(2/DF )−1Dlk∂l∂k Q (16)

where

Dlk = dlk − id
lk

dlk = λl
+λk

+ − λl
−λk

−, d
lk = λl

+λk
+ + λl

−λk
− (17)

The relation (16) also allows us to define the scale covariant derivative in the
fractal fluid dynamics

d̂

dt
= ∂t + V̂ i∂i + 1

4
(dt)(2/DF )−1Dlk∂l∂k (18)

3 Fractal Fluid Geodesics

Let us now consider the principle of scale covariance (the physics laws, which are
specific to the physical fractal fluid dynamics, are invariant with respect to scale
transformations) and postulate that the passage from the classical (differentiable)
physics to the fractal (non-differentiable) physics can be implemented by replacing
the standard time derivative d/dt with the non-differentiable operator d̂/dt . Thus,
this operator plays the role of the scale covariant derivative, namely it is used to
write the fundamental equations of fractal fluid dynamics in the same form as in the
classic (differentiable) case. Under these conditions, applying the operator (18) to
the complex velocity field (5), in the absence of any external constraint, the geodesics
take the following form:

d̂ V̂ i

dt
= ∂t V̂

i + V̂ l∂l V̂
i + 1

4
(dt)(2/DF )−1Dlk∂l∂k V̂

i = 0 (19)

This means that the local acceleration ∂t V̂ i , the local convection V̂ l∂i V̂ i and the
local dissipation Dlk∂l∂k V̂ i , make their balance in any point of the non-differentiable
curve. Moreover, the presence of the complex coefficient of viscosity-type in



160 M. Agop et al.

1
4 (dt)

(2/DF )−1Dlk in the fractal fluid dynamics specifies that it is a rheological
medium. So, it has memory, as a datum, by its own structure.

If the fractalisation is achievedbyMarkov type stochastic processes,which involve
Lévy type movements [1–4] of the fractal fluid entities, then:

λi
+λl

+ = λi
−λl

− = 2λδil (20)

where δil is the Kronecker’s pseudo-tensor.
Under these conditions, the geodesic equation of the fractal fluid takes the simple

form
d̂ V̂ i

dt
= ∂t V̂

i + V̂ l∂l V̂
i − iλ(dt)(2/DF )−1∂ l∂l V̂

i = 0 (21)

or more, by separating the motions on differential and fractal scale resolutions,

d̂V i
D

dt
= ∂t V

i
D + V l

D∂l V
i
D − [V l

F + λ(dt)(2/DF )−1∂ l]∂l V i
F = 0

d̂V i
F

dt
= ∂t V

i
F + V l

D∂l V
i
F + [V l

F + λ(dt)(2/DF )−1∂ l]∂l V i
D = 0 (22)

4 Fractality and Its Implications

The separation of the physical system dynamics on scale resolutions specifies at the
differentiable scale resolutions the fractal force:

Fi
F = (V l

F + λ(dt)(2/DF )−1∂ l)∂l V
i
F (23)

Its cancellation
(V l

F + λ(dt)(2/DF )−1∂ l)∂l V
i
F = 0 (24)

on the condition
∂l V

l
F = 0 (25)

induces a particular velocities fieldwhose explicit formwill be given inwhat follows.
Finding the solutions for these equations can be relatively difficult, due to the fact

that this equation system is a non-linear one. However, there is a analytical solution
of this system, in the particular case of a “stationary flow” in a plane symmetry (x, y).
In these circumstances, Eqs. (24) and (25) take the form:

Vx
∂Vx

∂x
+ Vy

∂Vx

∂x
= λ(dt)(2/DF )−1 ∂2Vx

∂y2
(26)
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∂Vx

∂x
+ ∂Vy

∂y
= 0 (27)

where VFx = Vx (x, y) is the velocity along axis Ox, VFy = Vy(x, y) is the velocity
along axis Oy. The boundary condition of the flow are:

lim
y→0

Vy(x, y) = 0, lim
y→0

∂Vx

∂y
= 0, lim

y→∞Vx (x, y) = 0 (28)

and the flux momentum per length unit is constant:

Θ = ρ

∫ +∞

−∞
V 2
x dy = const. (29)

Using the method from [8] for solving the Eqs. (26) and (27), with the limit
conditions (28) and (29), the following solutions result:

Vx = [1, 5( Θ
6ρ )2/3]

[λ(dt)(2/DF )−1x]1/3 · sec h2 [(0, 5y)( Θ
6ρ )1/3]

[λ(dt)(2/DF )−1x]2/3 (30)

Vy = [4, 5( Θ
6ρ )2/3]

[3λ(dt)(2/DF )−1x]1/3 · [ y( Θ
6ρ )1/3

[λ(dt)(2/DF )−1x]2/3 ·

· sec h2 [(0, 5y)( Θ
6ρ )1/3]

[λ(dt)(2/DF )−1x]2/3 − tanh
[(0, 5y)( Θ

6ρ )1/3]
[λ(dt)(2/DF )−1x]2/3 ] (31)

Relations (30) and (31) suggest that at all scale resolutions, the fractal fluid velocity
field is highly non-linear by means of soliton and soliton-kink type solutions (for
details see [9]).

For y = 0, we obtain in relation (30) the flow critical velocity in the form:

Vx (x, y = 0) = Vc = [1, 5( Θ
6ρ )2/3]

[λ(dt)(2/DF )−1x]1/3 (32)

while relation (29), taking into account (32) becomes:

Θ = ρ

∫ +∞

−∞
V 2
x (x, y)dy =

∫ +dc

−dc

V 2
c (x, 0)dy (33)

so that the critical cross section of the strains lines tube is given by:

dc(x, y = 0) = Θ

2ρV 2
c

= 2, 42[λ(dt)(2/DF )−1x]2/3( ρ

Θ
)1/3 (34)

Relations (30) and (31) can be strongly simplified if we introduce the normalized
quantities:
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u = Vx
y20
x0λ

, v = Vy
y20
x0λ

, ξ = x

x0
, η = y

y0
, μ = λ(dt)(2/DF )−1,

( Θ
6ρ )1/3

λ2/3
= x2/30

y0
(35)

where x0, y0 are specific lengths of the fractal fluid flow. It results:

u(ξ, η) = 1, 5

ξ 1/3μ1/3
· sec h2( 0, 5

μ2/3

η

ξ 2/3
) (36)

v(ξ, η) = (4, 5)2/3

31/3μ1/3ξ 1/3
[ η

μ2/3ξ 2/3
sec h2(

0, 5

μ2/3

η

ξ 2/3
) − tanh(

0, 5

μ2/3

η

ξ 2/3
)] (37)

In Fig. 1 we present the dependencies on the dimensionless spatial coordi-
nates ξ, η both of the fractal velocities components u = u(ξ, η), v = v(ξ, η) and
of the fractal velocity modulus V = √

u2 + v2 = V (ξ, η) for the fractality degrees
μ = 0.5; 0.9; 4. We observe an expansion of the fractal velocity field, both on the
components and on its modulus together with the increase of the fractality degree.

Fig. 1 The three-dimensional dependencies u = u(ξ, η), v = v(ξ, η), V = √
u2 + v2 = V (ξ, η)

for the fractality degrees μ = 0.5; 0.9; 4.
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5 Fractal Geodesics in the Schrödinger Type
Representation. Applications

Fractal Geodesics
For irrotational motions of the fractal fluid, the complex velocity field V̂ l takes

the form:
V̂ l = −2iλ(dt)(2/DF )−1∂ l lnΨ (38)

Then the geodesics Eq. (21) becomes:

d̂ V̂ l

dt
= −2iλ(dt)(2/DF )−1∂t∂

l lnΨ

+ [−2iλ(dt)(2/DF )−1∂p lnΨ

− iλ(dt)(2/DF )−1∂p]∂ p∂ l[−2iλ(dt)(2/DF )−1 lnΨ ] = 0. (39)

Since

∂ l(∂p lnΨ ∂ p lnΨ ) = 2∂p lnΨ ∂ p∂ l lnΨ

∂ l∂p∂
p lnΨ = ∂p∂

p∂ l lnΨ

∂ l(∂p lnΨ ∂ p lnΨ ) + ∂p∂
p lnΨ ) = ∂ l(

∂p∂
pΨ

Ψ
) (40)

Eq. (39) becomes:

iλ(dt)(2/DF )−1∂t∂
l lnΨ + λ2(dt)(4/DF )−2∂ l(

∂p∂
pΨ

Ψ
) = 0 (41)

By integrating the above relation we obtain:

λ2(dt)(4/DF )−2∂p∂
pΨ + iλ(dt)(2/DF )−1∂tΨ + Q2(t)Ψ = 0 (42)

with Q2(t) an arbitrary function of t.
In consequence, the non-differentiable geodesics (42) in the terms ofΨ are defined

up to an arbitrary function Q2(t), which is dependent on t . For Q(t) ≡ 0, the relation
(42) reduces to the fractal type Schrödinger equation:

λ2(dt)(4/DF )−2∂p∂
pΨ + iλ(dt)(2/DF )−1∂tΨ = 0 (43)

The standard Schrödinger equation:

�
2

2m0
∂p∂

pΨ + i�∂tΨ = 0



164 M. Agop et al.

can be obtained from (43) for non-relativistic motions on Peano curves [1], DF = 2,
at Compton scale λ = �/2m0, with � the Planck reduced constant and m0 the rest
mass of the physical entity.

In the case of non-differentiable dynamics with constraints, for instance under the
action of a scalar potential U , following the same procedure as before, one obtains
the fractal type equation:

λ2(dt)(4/DF )−2∂ l∂lΨ + iλ(dt)(2/DF )−1∂tΨ − U

2
Ψ = 0 (44)

For non-relativistic motions on Peano curves, DF = 2, at Compton scale λ =
�/2m0, the Eq. (44) takes the standard form:

�
2

2m0
∂l∂

lΨ + i�∂tΨ −UΨ = 0

If the scalar potential U is time independent, the Eq. (44) admits the stationary
solution:

Ψ (r, t) = Ψ (r) exp[− i

2m0λ(dt)(2/DF )−1
Et] (45)

where E is the fractal energy of the physical system of fractal type. Then Ψ (r) is the
solution of non-temporal Schrödinger equation of fractal type:

∂l∂
lΨ + 1

2m0λ2(dt)(4/DF )−2
(E −U )Ψ = 0 (46)

6 Fractal Motions in Central Field

Let us consider the case of a field of the form (central field)

U (r) = −C

r
,C = const. (47)

Since this field has spherical symmetry, the fractal type Schrödinger stationary
Eq. (46) in the presence of the scalar potential (47) becomes:

∂

∂r
(r2

∂Ψ

∂r
) + 1

2m0λ2(dt)(4/DF )−2
(E + C

r
)Ψ

= −[ 1

sin θ

∂

∂θ
(sin θ

∂Ψ

∂θ
) + 1

sin2 θ

∂2Ψ

∂ϕ2
] (48)

Following a procedure similar to the one from [10], one obtains the eigen-solution:
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Ψnlm(r, θ, ϕ) = Rnl(r)Yml(θ, ϕ) (49)

with

Rnl(r) = (
2

nr0
)3/2{ (n − l − 1)!

2n[(n + l)!]3 }1/2( 2r
nr0

)l exp(− r

nr0
)L2l+1

n+l (
2r

nr0
)

Yml(θ, ϕ) = (−1)k[ (l − m)!(2l + 1)

(l + |m|)!4π ]1/2Pm
l (cos θ) exp(imϕ)

r0 = 4m0

C
λ2(dt)(4/DF )−2 (50)

n = 1, 2, 3, ..., l = 0, 1, 2, ..., n − 1,m = 0,±1,±2, ...,±l

k =
{
m, for m ≥ 0

0, for m < 0,

where L2l+1
n+l are the generalized Laguerre polynomials, Pm

l are the generalized Leg-
endre polynomials, n is the principal fractal number, l is the orbital fractal number,
m is the magnetic fractal number, respectively the eigenvalue:

En = −2m0λ
2(dt)(4/DF )−2 1

n2r20
= − 1

n2
· C2

8m0λ2(dt)(4/DF )−2
(51)

Now, if we rewrite the Eq. (51) in one of the forms:

En = −m0

2
(vn)

2 = −m0

2
(
v0

n
)2 (52)

one obtains the fractal law of orbital velocities quantification:

vn = v0

n
, v0 = 2λ(dt)(2/DF )−1

r0
= C

2m0λ(dt)(2/DF )−1
(53)

Moreover, accepting the functionality of the relation:

m0v
2
n

rn
= C

r2n
(54)

one finds the fractal law of the orbital rays quantification in the form:

rn = n2r0, r0 = C

m0v
2
0

(55)
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Based on the relations (53) and (55) one obtains both the fractal law of quantifi-
cation of the orbital specific kinetic moments:

ln = rnvn = nl0, l0 = 2λ(dt)(2/DF )−1 (56)

and the fractal law of quantification of the orbital periods:

Tn = 2π
rn
vn

= n3T0, T0 = 2π
r0
v0

= 16πm2
0
λ3(dt)(6/DF )−3

C2
(57)

Certain similarities between the dynamics at small scale resolution (atomic scale)
and high scale resolution (cosmological scale) are presented in Table 1.

In Table 1, e is the fundamental electric charge, ε is the vacuum electric permit-
tivity, G is the gravitational constant, M is the mass of the source body, m is the test
particle mass and w is the velocity “quanta” in the gravitational structures [11].

7 Quantifiable Dynamics at Infragalactic Scale
Resolutions. Theoretical and Experimental Aspects

The quantifiable dynamics at infragalactic scale resolution refer to motions of the
gravitational structures inside the galaxies (for instance, the planetarymotions around
the Sun, the motions of the natural satellites around the planets, the motions of the
stars inside the clusters of galaxies etc.). In what follows, taking into account the
astronomical observations, we shall prove that at our solar system level, the dynamics
(both of the planets around the Sun and of the natural satellites around the planets)
are quantifiable. Indeed, in Table 2 we show the quantification of planetary motion
using the relations (53), (55), (56) and (57) comparing with the experimental data.
Moreover, the quantification of the Saturn’s rings motion is also given - see Table 3.

It should be noted that Eqs. (53) and (56) and their consequences only determine
the allowed orbits. Actually, only a few allowed orbits are occupied by the planets.
The reason for this can only be subjected to guesses (in fact, the origin of the planets
is yet today a subject of guesses). One can suppose for instance that the protoplane-
tary material was originally distributed to form rings in correspondence with every
fractal number, and that gravitational instabilities or perturbations have brought to
a final state of aggregation of the material in planets over some orbits in correspon-
dence with some particular fractal numbers. Otherwise, one can guess that external
gravitational perturbations acting on an almost continuum protoplanetary material
in gravitational, centrifugal and thermodynamical equilibrium, led to spatial den-
sity resonances mainly corresponding to some transversal eigenfunctions (which, of
course, must satisfy circular periodicity conditions).

Anyway, and with a certain surprise one can see from Table 2 that the inter-
pretation of the planetary orbits with a gravitational atom model is in reasonable
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agreement with the observed data, even for small fractal principal numbers. How-
ever, we acknowledge that it is still not enough to give validity to our conjecture, and
that alternative hypotheses could be formulated. To extend the investigation on this
topic, some more information about other planetary systems is required” [11].

In [12] the planetary motion of a companion of the star 51 Pegasus, with a mass
ranging between one half and twice the mass of Jupiter and mean distance from
51 Pegasus about 0.05 a.u., has been examined: it turns out that its orbit nearly
corresponds to the fractal number n = 1 of its planetary system. Some reported
uncertainty on themass of 51 Peg (a star “quite similar to the Sun”) could be removed
if one guesses that the orbit of its large planet exactly corresponds to n = 1: on the
basis of the observed period (P = 4.23 days) a distance r0 = 0.055 a.u. and a mass
M51 Peg. = 1.26M� can be obtained. Thus, some recent knowledge about a simple
“gravitational atom” different from our solar system seems to support our guess. In
particular the orbits of the planets HR5185 and HR458 corresponds to n = 1.

We will shortly examine some consequences of our guess on the allowable orbits
around the various planets.Of course, themajor semi-axes of these orbits are obtained
by substituting in Eq. (55) themass of the SunM� with themassMP of the concerned
planet. Assuming the universality of the gravitational structure constant α = c/w,
with c the velocity of light in the vacuum, one immediately gets from Eq. (55)

r (P)
0 = r�

0 MP/M�

where r (P)
0 indicates the “Bohr radius” for orbiting motion around the planet.

Using the value r�
0 = 0.0439 ± 0.0004 a.u. (for details see [11]) one can obtain

some interesting results. For instance, considering the principal fractal number of the
first “free” (i.e., out of the planet) allowable orbits, one can note that for Mercury,
Venus, the Earth, Mars and Pluto these orbits correspond to relatively high (≥19)
fractal principal numbers. The opposite, i.e., small (≤11) “free” fractal numbers, is
verified for the big planets.

As regards the orbits of the satellites one really obtains both good and bad results.
This disappointing ambiguity could be partly attributed to the important role that
other forces, besides the gravitational one, play in this case.

More interesting coincidences are found if one considers the Saturn ring “powder”
structure. In Table 2we show themain features of this structure and the corresponding
discretized radii. One can note that the inner edges of the main rings (D, B and the
Cassini division together with the neighboring A ring) are almost exactly singled out
by the corresponding calculated radii.Anexception is representedby the inner edgeof
the C ring. On the other hand, this ring does not originate from purely gravitational
forces, since, as explicitly remarked in the Landolt-Börnstein handbook [13], the
boundary between the B and C rings is presumably related to electrodynamical
interaction between the charged dust particles of the ring system and the planetary
magnetic field. One must finally note the remarkable calculated singling out of the
(somewhat conventional) limits of the broad rarefied E ring.
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Of course, we agree on the fact that the previous remarks about the orbital motion
around the planets are in no way conclusive in order to check our guess, and in
particular the “universality” of the gravitational structure constant αg , which, we
recall, has been estimated by calculations concerning only orbital motions around
the Sun [11].

8 Quantifiable Dynamics at Extragalactic Scale
Resolutions. Theoretical and Experimental Aspects

The dynamics at extragalactic scale resolutions refer to intergalactic motions.
The application of our fractal method to the problem of galaxy pairs is similar

to the solar system case. We start from the remark that even an “isolated” pair in
galaxy catalogues is never truly isolated. We shall then describe the effect of the
uncontrollable interactions of the environment in terms of the here above complex
Wiener process, i.e., for DF = 2.

In classical aswell as quantummechanics andmoregenerally as fractalmechanics,
the problem of the relative motion of two bodies can be reduced in the reference
system of the center of inertia to that of one body of mass,

μ = m1m2/(m1 + m2)

In the particular case of gravitation, the potential �G = −Gm1m2/r , so that the
equation of motion is that of a test particle around a body of mass m0 = m1 + m2.

The same is true here, so that Eq. (48) still applies to this case.
We find that the pair energy is quantized as:

EGn = −1

2
μ

w2

2

and that the relative velocity in binary galaxies must take only preferential values
given by:

vGn = w

n
, w = αg · c, α−1

g = 2072 ± 7

We enumerate in Table 4 the velocity quantization for some typical pairs of galax-
ies. Such a theoretical result seems to provide an explanation for Tifft’s effect of
red-shift quantization in binary galaxies [14–16]. Indeed it has been claimed by Tifft
[16] that the speed differences in isolated galaxy pairs was not distributed at random,
but showed preferential values near 144, 72, 36 and 24 km/s, i.e., (144/n) km/s with
m = 1, 2, 3, ... This result, in particular the 72 km/s periodicity was confirmed by
several authors [14, 15].

However, a global quantization with nearly the same velocity differences, 72 and
36 km/s [17], has also been found in samples on nearby galaxies, even when pairs are
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excluded. We shall now see how this effect can also be understood in our framework,
but in terms of a cosmological effect, then recall briefly how the “global” quantization
and the pair quantization must be related.

9 Atomic-Planetary Nebulae Analogies

Physically meaningful self-similarity (in any of its forms - prefractality, fractality or
multifractality) does not require analogues on different scales to be exact replicas, but
only to be similar in shape andmotion, and related by consistent scaling relations [18].
Moreover, the atoms galaxies analogies find further support in the recent findings: that
galaxies appear to have quantized redshifts, and that the statistics of galaxy clustering
bear a remarkable ressemblance to results derived for subatomic particles. Galaxies
and atoms share the samebasic spherical, oblate andprolate shapes (spheroid, bipolar,
propeller, caps, butterfly, toroid, sphere-within-a sphere, etc.) (Fig. 2).

For each atomic-planetary nebulae analogy, the left image is an atomic shape
representing one of eight different excitations states (different fractal numbers n, l,m
which determine the probability density distributions or really distributions of the
physical mass of electron for a given energy state).

The images to the right are photographs and schematic models of planetary nebula
star systems. Generally, the planetary nebulae are created when their central hot stars
violently eject their outer shells. In this process, some loss of the presymmetry can
be expected for these expanding astrophysical objects [19–22].

We present in Fig. 2 various analogies between atomic states - planetary
nebulae according to (http://hubblesite.org/image/771/news/25-stellarjets;
https://en.wikipedia.org/wiki/Abell39; https://en.wikipedia.org/wiki/CarinaNebula;
http://demonstrations.wolfram.com/VisualizingAtomicOrbitals/).

10 Phase and Group Velocities. Fractal Type Uncertainty
Relations and Their Implications

The hypothesis concerning the non-differentiability of the motion curves at any scale
resolution has as an immediate consequence the fact that to any fractal type physical
system (in a free motion on a fractal space - fractal type geodetic motion) one can
associate at any scale resolution, a fractal type wave characterized through its state
function Ψ ,

Ψ (r, t) = A exp[−i(ωt − kR)] ≡ A exp[− i

2M0λ(dt)(2/DF )−1
(Et − PR)] (58)

http://hubblesite.org/image/771/news/25-stellarjets
https://en.wikipedia.org/wiki/Abell39
https://en.wikipedia.org/wiki/CarinaNebula
http://demonstrations.wolfram.com/Visualizing Atomic Orbitals/
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Fig. 2 Analogies between atomic states-planetary nebulae. Planetary nebula: Eta Carina, A-39,
IRAS 04302+2247
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with

E = MV 2
0 = 2M0λ(dt)(2/DF )−1ν

P = 2M0λ(dt)(2/DF )−1k = MV (59)

where A is the wave amplitude, ω is the wave pulsation, ν is the wave frequency,
k is the wave vector, E is the energy, P is momentum vector, R is the position
vector, V is the velocity vector, t is the non-fractal time, M is the motion mass,
M = M0(1 − V 2/V 2

0 )−1/2, M0 is the rest mass and V0 is the limit velocity.
The propagation velocity of the wave can be considered to be equal to the propa-

gation velocity of the wave surface (the phase velocity of the wave), V f , i.e., of the
surface for whom the phase in the case of the one-dimensional free motion

S = Et − PX = const. (60)

i.e.,

V f = dX

dt
= E

P
= MV 2

0

MV
= V 2

0

V
(61)

Since V<V0, the phase velocity is higher than the limit velocity V0. The fact that
the phase velocity V f is higher than the limit velocity V0 does not contradict the scale
relativity principles [5, 6] because V f is not a propagation velocity of the fractal type
interactions.

Let us associate now, to any scale resolution and to any fractal type physical system
(in a free motion on a fractal space), a waves package obtained by overlapping of an
ensemble of plane harmonic waves, for which the momentum, P , of the fractal type
physical system is contained in the interval

P0 − ΔP

2
≤ P≤P0 + ΔP

2
(62)

where P0 is the momentum of the waves packet and ΔP is the momentum variation
of the same package equipped by its “extension”. Analogously with the quantum
case one obtains:

Ψ (X, t) = A exp[− i

2M0λ(dt)(2/DF )−1
(E0T − P0X)] × sin ξ

ξ
(63)

where

ξ = ΔP

4m0λ(dt)(2/DF )−1
(X − ∂E

∂P
t) (64)

Taking into account that the relation from the scale relativity between the wave
package and the momentum for a free fractal type physical system has the form:
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E = V0

√
M2

0V
2
0 + P2, (65)

the group velocity of the wave package becomes:

VG = ∂E

∂P
= V 2

0 P

E
= V 2

0 MV

MV 2
0

= V (66)

In consequence, the groupvelocity of thewavepackage (66) is equal to the velocity
of the fractal type physical system.

At a certain time t , the wave package (63) “extends” on the distanceΔX , obtained
by the fractal relation:

Δξ = ΔPΔX

2M0λ(dt)(2/DF )−1
≥ π (67)

or
ΔPΔX ≥ 2πM0λ(dt)(2/DF )−1 (68)

The last expression corresponds to an uncertainty relation of fractal type. For the
particular case of motions on Peano type fractal curves, DF = 2, at Compton scale
λ = �/M0c, one obtains Heisenberg uncertainty relation:

ΔPΔX ≥ h. (69)

Using a procedure similar to the one from [10], the fractal type uncertainty relation
in energy-time becomes:

ΔEΔt ≥ 2πM0λ(dt)(2/DF )−1 (70)

For the particular case ofmotions on Peano type fractal curves, DF = 2, at Comp-
ton scale λ = h/M0c one obtains the standard uncertainty relation:

ΔEΔt ≥ h (71)

However, which are the implications if one admits an uncertainty relation at
cosmological scale of the type

ΔEΔt ≥ hG (72)

where hg is the gravitational type Planck constant, whose value is hG = (7 − 8) ·
1067 J s (for details see [20, 21]).

A numerical benchmark for the ground-state energy of a “typical” galaxies pair
can be calculated by taking m1 ≈ m2 ≈ 1041 kg. (≈ the mass of the Milky Way).
Then, through EGn = −(1/2n2)μc2α2

g , with μ the reduced mass, and n the main
fractal number, for n = 1 one finds E1 = −1049 J. Using Eq. (72), the lifetime for
excited states can be estimated. If ΔE is approximated as the energy difference
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between the ground state and the first excited state (≈ |E1|), then, from Eq. (72) with
hg ≈ (7 − 8) × 1067 J s [22], Δt ≈ 2 × 1011year . The excited state has a lifetime
≈ 10×(the age of Universe), as estimated using the standard cosmological model
[22]. Therefore, if a double galaxy is formed in an excited state (or if it somehow
reaches one after birth), it remains in that state for its entire existence.

The fractal excitation “energy” (= hgν) is monochromatic gravitational radiation
initially. It must be somehow converted to a spectrum of electromagnetic radiation,
which is then emitted during the lifetime of the double galaxy. The conversion mech-
anism may be possibly related to gravitational collapse in the galactic nuclei of the
pair. Since hg is so large, it is plausible to expect radio wave emission to dominate,
just as visible light dominates the emission spectrum of excited atoms (because h
is so small). This consideration leads to two interesting possibilities which have not
been considered:

(i) Double galaxies may be strong radio sources, compared to singles. Preliminary
evidence supports this idea [20]. It was shown for a sample of isolated galaxies
and isolated doubles, virtually all of them being spirals that compact radio sources
occurred four times more frequently in doubles than in singles. There was also a
higher occurence of strong radio emission from doubles compared to singles, with
(on the average) a greater power output in double associated with the more frequent
occurence of active galactic nuclei in their components. Although these results are
encouraging, they are not definitive because of the small sample size and of other
possible selection biases.

(ii) Some radio-active quasarsmay be cleverly disguised double galaxies in highly
excited quantum states and at an early stage of evolution. Preliminary evidence sug-
gests there may be localized radio sources inside some quasars, but better telescope
resolution may be required to test the idea. However, there is some cause for cautious
optimism. A rough estimate of the quasar’s average power output in this model is
of an acceptable order of magnitude, providing the mass of a “typical” component
is taken as m1 ≈ m2 ≈ 1043 kg. and the average time of existence is τ ≈ 109 year:
i.e., Pave ≈ (εn − ε1)/τ ≈ 1039 J/s ≈ 106L�, where L� is the Sun’s luminosity.

11 Concluding Remarks

The main conclusions of this chapter are the following:
(i) It is built a dynamics of the multifractal type physical systems, considering

that their entities simultaneously move on continuous but non-differentiable curves
having different fractal dimensions. For this purpose, we firstly defined a fractal
operator of motion with the role of scale covariant derivative and then, based on a
scale covariance principles, we obtained the fractal space geodesics equations;

(ii) The separation of motions on scale resolutions (the differential one and the
fractal one) in the geodesics equations induces a specific fractal force, which repre-
sents a measure of the non-differentiability of the motion curves;
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(iii) The cancellation of the specific fractal force along with the satisfying of the
states density conservation law at fractal scale resolutions imply the existence of
a non-linear system of equations. In order to have a plane symmetry and adequate
constraints (initial and to the limit), this system makes explicit a fractal velocities
field in the form of the kink type, soliton type etc. solutions;

(iv) For irrotational motions of the physical system entities, we made explicit its
geodesics in the form of a Schrödinger type fractal equation;

(v) Using the Schrödinger type fractal equation, we explicited similarities in the
dynamics of certain physical systems at small scale resolutions,by means of atoms,
respectively, at high scale resolutions by means of gravitational structures;

(vi) We proved that, at our solar system level, the dynamics (both of the planets
around the Sun and of the natural satellites around the planets) show similarities in
the form of certain quantifiable movements;

(vii) We demonstrated that the quantifiable movements at extra-galactic scale res-
olutions manifest in the form of red-sfiht quantization in binary galaxies. Moreover,
atomic-planetary nebulae analogies were presented;

(viii)We obtained fractal uncertainty relations. In such framework, the admittance
of an uncertainty relation at cosmological scale has a remarkable consequence in
the sense that, for hg = (7 − 8) × 1067 J s it results that a galaxy pair formed in an
excited state of “hydrogen atom” type, remains in that state for its entire existence.
The “quantum excitation energy” is monochromatic gravitational radiation initially.
It must be somehow converted to a spectrum of electromagnetic radiation, which is
then emitted during the lifetime of the double galaxy. The conversion mechanism
may be possible related to gravitational collapse in the galactic nuclei of the pair.
Since hg is so large, it is plausible to expect radio wave emission to dominate, just
as visible light dominates the emission spectrum of excited atoms (because h is so
small).
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Plasma Perturbations and Cosmic
Microwave Background Anisotropy
in the Linearly Expanding Milne-Like
Universe

S. L. Cherkas and V. L. Kalashnikov

1 Introduction

Present universe is transparent for photons, but it was not the same before the hydro-
gen recombination at the red-shifts of z ≈ 1100,1 when it was filled with the photon-
baryon plasma. Protons and electrons were coupled to the radiation through the
Compton scattering by electronswhich in turn are coupled to the baryons byCoulomb
interaction [1, 3]. Such primordial plasma perturbations were widely considered in
cosmology, and their fingerprints depend on a law of the universe expansion that is
the crucial point for our further analysis.

Recently, the Milne-like cosmologies considering the linearly expanding (in cos-
mic time) universe models [4, 5] again attract an attention [6–15]. Instead of the

1z is the red-shift parameter used as a measure of cosmological time and distance: z + 1 = a0/a(η),
where a0 is the present scale factor value, and a(η) is the scale factor at some earlier photon emission
time η [1, 2].
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original open and empty Milne universe model [4, 5],2 the flat universes filled with
some exotic matter are considered. It seems reasonable to associate such “a primor-
dial matter fluid” with the vacuum [16].

We will consider the perturbations of plasma consisting of photons, baryons, and
electrons in a linearly expanding (Milne-like) universe with taking into account the
metric tensor and vacuum perturbations. Here, we will use the oversimplified model
of plasma as a pure radiation, i.e., a substance with the equation of state w = 1/3,3

to obtain an analytical solution. This approximation is admissible because initially,
the temperature is sufficiently large to consider all the particles as a relativistic
fluid. Then, the particles decay eventually to the photons, electrons, and baryons.
According to observations number of photons is of 109 times larger than that of
nucleons and electrons. Thus, the nucleons contribute at only the late stage of the
universe evolution.Wewill base our analysis of themetric tensor perturbations,which
contribute to the primordial plasma formation, on the five-vectors theory of gravity
[18]. The quantization of this model could resolve the problem of huge vacuum
energy [19] and allow omitting its main part.4

2 Perturbations of Plasma and Vacuum

Weexpose the perturbation theory for primordial photon-baryon plasma, vacuumand
metric tensor. Vacuum issue is the well-known challenge for quantum or, at least,
semiclassical theory [16, 19–22]. Here, wewill consider a vacuum purely classically,
that is as a substance producing the linear expansion of the universe in the framework
of the developed theory [18] which admits adding or extracting some constant to the
energy density.

2.1 Underlying Gravity Theory

The conventional theory of the CMB spectrum is the General Relativity theory (GR)
(e.g., see [2]). In the case of theMilne-like cosmology, the issue is more complicated,
because an origin of linear universe expansion is not clear. As was shown, such
linear expansion could arise from the residual vacuum fluctuations of quantized
fields including the scalar and gravitational ones after omitting the main part of huge
vacuum energy [16]. As was mentioned above, the mystery of cosmological vacuum

2The universe proposed initially byMilne describes an open and empty (i.e., Minkowski) spacetime
which expands linearly with time [1, 4, 5]. It is negatively-curved spatially (i.e., hyperbolical) in
3-dimensions but is “flat” in 4 (i.e., spacetime)-dimensions.
3We use a classical definition for the equation of state parameter w corresponding to a perfect fluid,
that is the ratio of pressure to density [17].
4Below, the system of units � = c = 1will be used, and we define the present scale factor as a0 = 1.
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is among the critical issues of modern physics [19, 21, 22]. Below we will use
the theory which validates omitting the vacuum extra-energy and, besides, provides
obtaining the analytical solutions.

Let’s start from the Einstein-Hilbert action for GR in the form of [23]:

S = −M2
p

12

∫
G

√−g d4x, (1)

where G = gαβ
(
Γ ρ

ανΓ
ν
βρ − Γ ν

αβΓ ρ
νρ

)
, and Mp is the Planck mass, which is chosen

as Mp =
√

3
4πG .

The next step is a violation of the general coordinate covariance principle in (1)
according to the Milne’s perception of the principally different concept of time in
GR and quantum mechanics [24–26], so that we will consider the restricted class of
metrics gμν in the form of

ds2 ≡ gμνdx
μdxν = a2

(
1 − ∂m P

m
)2
dη2 − γi j (dx

i + Nidη)(dx j + N jdη),

(2)
where γi j is the induced three metric, a = γ 1/6 is the scale factor defined locally,
and γ = det γi j . A spatial part of the interval (2) can be written as

dl2 ≡ γi j dx
idx j = a2(η, x)γ̃i j dx

idx j , (3)

where γ̃i j = γi j/a2 is amatrixwith the unit determinant. The interval (2) is analogous
to the the ADM one [27], but the expression 1 − ∂m Pm is used instead of a lapse
function, where ∂m is a partial derivative and Pm is a three-vector. Varying the action
over vectors P , N and three metric γi j leads to the equations of the five-vectors
theory (FVT) [18]:

∂gμν

∂γi j

(
(∂G

√−g)

∂gμν
− ∂

∂xλ

∂(G
√−g)

∂(∂λgμν)
− 6

M2
p

Tμν

√−g

)
= 0,

∂gμν

∂Ni

(
∂(G

√−g)

∂gμν
− ∂

∂xλ

∂(G
√−g)

∂(∂λgμν)
− 6

M2
p

Tμν

√−g

)
= 0,

∂gμν

∂(∂ j Pi )

∂

∂x j

(
∂(G

√−g)

∂gμν
− ∂

∂xλ

∂(G
√−g)

∂(∂λgμν)
− 6

M2
p

Tμν

√−g

)
= 0. (4)

Eq. (4) areweaker than the GR ones. At the same time, the restrictions∇(∇ · P) = 0
and ∇(∇ · N) = 0 on the Lagrange multipliers arise [18]. In the particular case of
∇ · N = 0, the Hamiltonian constraint is satisfied up to some constant.
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The next step is to develop a theory for the scalar perturbations in the gauge of
P = 0, N = 0:

ds2 = a(η)2(1 + 2A)

(
dη2 −

((
1 + 1

3

3∑
m=1

∂2
mF

)
δi j − ∂i∂ j F

)
dxidx j

)
. (5)

An interval (5) is a particular form of the interval (2) up to the higher order terms in
F(η, x) by virtue of

ln

[
det

((
1 + 1

3

∑
m

∂2
mF

)
δi j − ∂i∂ j F

)]
≈ tr

((
1

3

∑
m

∂2
mF

)
δi j − ∂i∂ j F

)
= 0.

Writing Eq. (4) up to the first order relatively A(x, η) and F(x, η) leads to the
required perturbation theory.

2.2 Energy-Momentum Tensor

As was above mentioned, we violate eventually the general coordinates’ transforma-
tion invariance by the restriction of themetrics’ class by representing them in the form
of (2). To built the energy-momentum tensor in the field theory, one should write the
corresponding special relativistic expression and then change the partial derivatives
to covariant ones. Using a hydrodynamic approximation is more convenient. In this
framework the energy-momentum tensor is

Tμν = (p + ρ)uμuν − p gμν. (6)

The equations of motion for some fluid in the GR can be obtained from both the
equations of motion of the fluid point-like components and the conservation of the
energy-momentum tensor DμT μν = 0, where Dμ is a covariant derivative. In FVT,
the energy-momentum tensor conserves only in theMinkowski space-time.However,
one can deduce the equation of motion for fluid from the conservation of energy-
momentum tensor by virtue of the Eq. (6) self-consistency in the particular gauge (5).
Below,wewill consider the scalar perturbations of a fluid c (the index c denotes a kind
of fluid) in the form of ρc(η, x) = ρc(η) + δρc(η, x), pc(η, x) = pc(η) + δpc(η, x)

and represent the 4-velocity in the form of

uμ
c = 1

a(η)
{(1 − A),∇vc(η, x)}, (7)

where vc(η, x) is a scalar function.
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2.3 Zero-Order Equations

The zero-order evolution equation for logarithm of the scale factor α(η) = ln a(η)

takes the form of
α′′ + α′2 = M−2

p e2α(ρ − 3p), (8)

where ρ = ∑
c ρc and p = ∑

c pc are the uniform energy density and pressure,
respectively. Summation is performed over all the kinds of matter, but here we
will consider only vacuum c = v and radiation c = r . For every component of a
substance, the equation of motion is:

ρ ′
c + 3α′(ρc + pc) = 0. (9)

Pressure of a fluid is connectedwith the energy density as pc = wcρc (see the footnote
3 above and Ref. [17]). It is worthmentioning that the Friedmann equation is satisfied
only up to some constant in the framework of the model considered:

M−2
p e4αρ(η) − 1

2
e2αα′2 = const, (10)

that is the integral of motion of Eqs. (8), (9).
As was shown [28], the residual vacuum fluctuations can explain a nearly-linear

universe expansion. Here, for simplicity, we will use an empirical consideration. Let
us analyze a linear universe expansion that means a(η) = B exp (H η) in conformal
time, and find the corresponding empirical equation for the vacuum state. The very
simple equation of state arises if we set a constant in the Friedmann equation (10)
so that

M−2
p e4αρv − 1

2
e2αα′2 = 0. (11)

It is possible because ρre4α is also constant. Under such choice of a constant, the
equation of the vacuum state will be wv = −1/3. This equation of state is widely
discussed earlier [9, 10, 14]. One may obtain from Eq. (9) ρve2α = const for the
vacuum, that results in (see Eq. 11):

a(η) = exp (α(η)) = B exp (H η) , (12)

where B is some constant. In the cosmic time dt = a(η)dη

a(t) = H t, (13)

i.e., it is a linear expansion of the universe.
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2.4 Perturbations

Introducing the quantity Vc = (pc + ρc)vc for every fluid c and expanding all per-
turbations into the Fourier series δρc(x) = ∑

k δρckeikx ... etc. result in the equations
for perturbations:

− 6A′
k + 6Akα

′ + k2F ′
k + 18

M2
p

e2α
∑
c

Vck = 0, (14)

−18α′A′
k − 18Akα

′2 − 6k2Ak + k4Fk + 18

M2
p

e2α
∑
c

δρck + 4Ak ρc = 0, (15)

−12Ak − 3
(
F ′′
k + 2α′F ′

k

) + k2Fk = 0, (16)

−9
(
A′′
k + 2α′A′

k

) − 18Akα
′′ − 18Akα

′2 − 9k2Ak + k4Fk

− 9

M2
p

e2α
∑
c

4Ak(3pc − ρc) + 3δpck − δρck = 0, (17)

−3α′(δpck + δρck) − 3A′
k(ρc + pc) − δρ ′

ck + k2Vck = 0, (18)

(ρc + pc)Ak + 4Vckα
′ + δpck + V ′

ck = 0. (19)

The last two equations, obtained from the energy-momentum conservation, are
assumed to be valid for every c-substance under consideration. The choice of the
constant in Eq. (10) is arbitrary. The constraint Eqs. (14) and (15) are consistent with
other equations under this arbitrary choice. It is not true in a perturbation theory
within the framework of GR, where a perturbation of the constraint equations is
consistent with other equations only if a sum of the mean densities of all fluids
equals the critical density (for the flat universe). Here we consider the flat universe
in a mean, but the sum of the mean densities is determined up to some constant,
and nevertheless, all the equations for perturbations are self-consistent. With that
chosen constant in Eq. (10), the radiation does not affect the universe expansion and
the equation of state wv = −1/3 for the vacuum results in linear expansion of the
universe. Thus, the equations of state are wv = −1/3 for the vacuum and wr = 1/3
for the radiation.5

Such choice of the constant in (10) is an invention expired by the existence of the
analytical solution in this case. The above system of the equations can be reduced
to a single linear equation with the constant coefficients under the assumption of
a(η) = B exp (H η) and ρr = ρr0

a4(η)
, where ρr0 is a density of radiation at the present

time:

9δρ(4)
rk + 6

(
30H δρ

(3)
rk + (

222H 2 + k2
)
δρ ′′

rk + 10H
(
72H 2 + k2

)
δρ ′

rk

)

+ (
48H 2 + k2

) (
108H 2 + k2

)
δρrk = 0. (20)

5δpck = wcδρck is assumed, as well.
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That allows obtaining the solution for the perturbation of radiation density:

δρrk = e−6ηH
(
C1e

−i ηk√
3 + C2e

i ηk√
3

)
+ e−4ηH

(
C3e

−i ηk√
3 + C4e

i ηk√
3

)
. (21)

For a “flux” of the radiation fluid Vrk, we have

Vrk = B2H Mp
2

6kρr0
e−4ηH

(
C1

(
k − i

√
3H

)
e−i ηk√

3 + C2

(
k + i

√
3H

)
e

iηk√
3

)
.

(22)

Other functions Ak, Fk, δρvk, Vvk found from the system (14)–(19) are presented in
Appendix.

The constants C1,C2,C3,C4 have to be determined from the initial conditions.
The constants Z1, Z2 (see Appendix) do not contribute to the radiation density per-
turbations. Thus, we will equal them to zero. Indeed, it is reasonable to assume that
an empty universe (i.e., filled by the only vacuum) has no any rising physical pertur-
bation, and only perturbations connected with the radiation over the vacuum have a
physical meaning. For simplicity, we assume that the only perturbations of radiation
density δρrk(ηin) are non-zero initially, where ηin is an initial moment in conformal
time.

Then, the solutions of the perturbation theory equations take the form:

δρrk(η) = e4H (ηin−η)

(
4
√
3H sin

(
k(η − ηin)√

3

)
(23)

+k cos

(
k(η − ηin)√

3

))
δρrk(ηin)/k, (24)

Vrk(η) = 0, Ak(η) = − B4e4ηH

4ρr0
δρrk(η), (25)

Fk(η) = − 3B4e4H ηin

2k2ρr0
(
3H 2 + k2

)
((

12H 2 + k2
)
cos

(
k(η − ηin)√

3

)

+3
√
3H k sin

(
k(η − ηin)√

3

))
δρrk(ηin), (26)

Vvk(η) = B2H 2Mp
2e4H ηin−2ηH

12kρr0
(
3H 2 + k2

)
(√

3
(
12H 2 + k2

)
sin

(
k(η − ηin)√

3

)

−9H k cos

(
k(η − ηin)√

3

))
δρrk(ηin), δρvk(η) = 3H Vvk(η). (27)

The quantities Vvk(η) and δρvk(η) will not be needed for the CMB spectrum calcu-
lations and will not be considered further.
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2.5 “Gauge Invariant” Variables

The issue is that the metric (5) has not a typical form of

ds2 = a2(η)
(
(1 + 2Φ(η, x))dη2 − (1 − 2Ψ (η, x)) δi j dx

idx j
)
, (28)

which appears in the conventional perturbation theory [1, 3] of GR. The compara-
bility of previous results with those of the GR conventional perturbation theory can
be provided by the “gauge invariant” densities, velocities and potentials [1]:

δ̃rk(η) = δρrk(η)

ρr (η)
− 2α′(η)F ′

k(η), ṽrk = Vrk(η)

ρr (η) + pr (η)
− f ′

k(η)

2
,

Φk(η) = Ak(η) + a′(η)F ′
k(η) + a(η)F ′′

k (η)

2a(η)
,

Ψk(η) = −a′(η)F ′
k(η)

2a(η)
− Ak(η) + 1

6
k2Fk(η). (29)

We could not work with the “invariant” potentials initially because the metric (28)
has not the form (2) and does not admit obtaining the consistent system of the
equations when the zero-order Friedmann equation is violated, i.e., satisfied up to
some constant (10). For our simplified approach, when only initial value of δρrk is
nonzero, the calculated “invariant quantities” are

δ̃rk(η) = 1(
3H 2 + k2

)
((

12H 2 + k2
)
cos

(
k(η − ηin)√

3

)

+3
√
3H k sin

(
k(η − ηin)√

3

))
δrk(ηin),

ṽrk(η) = 1

4k
(
3H 2 + k2

)
(
9H k cos

(
k(η − ηin)√

3

)

−√
3

(
12H 2 + k2

)
sin

(
k(η − ηin)√

3

))
δrk(ηin),

Φk(η) = 0, Ψk(η) = 0, (30)

where we take into account that ρr0
B4 exp(4H ηin)

= ρr (ηin) and δrk(ηin) = δρrk(ηin)

ρr (ηin)
. The

potentialsΦk,Ψk are zero only because we use the simplified initial condition, where
δρrk is nonzero initially.
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2.6 Silk Dumping

Electrons scatter the photons before the time of the last scattering surface. Although
we consider photon-electron-baryon plasma as some perfect medium with the equa-
tion of state w = 1/3, the photon diffusion due to the Thompson scattering exists
[2]. To estimate this (so-called Silk dumping) contribution to the perturbations, we
follow the methodology of Refs. [1, 3] suggesting the suppression of the expressions
(23), (25)–(27) and (29) by the factor exp

(−k2/k2D
)
, where kD is written as [1]

kD(ηr ) ≈
(

2

15

∫ ηr

0

dη

σT nea

)−1/2

=
(

2

15σT nb0

∫ ηr

0
a2dη

)−1/2

, (31)

and σT = 6.65 × 10−25 cm2 is the Thompson cross section. The free electron density
ne before recombination equals to the baryon density and scales as ne = nb0a−3,
where nb0 is the baryon present density

nb0 = Ωb

M2
pH

2

2mp
(32)

expressed through a dimensionless quantity Ωb, a proton mass mp and a critical
density M2

pH
2/2. Formally, for the dependence given by (12), an integration in (31)

has to begin from η = −∞. However, as was shown in [28], the universe started
from a power-law expansion changed by (12) afterward. It was also shown, that B is
of the order of 10−30. Under this condition, B does not play a role if the lower limits
of η equal −∞ or zero (the results are approximately the same in both cases).

Substituting the dependence (12) and the conformal time of the last scattering
surface ηr = 1

H ln 10−3

B , that corresponds to the scale factor ar ≈ 10−3, into (31)
results in

kD(ηr ) =
√
15σT nb0H × 103 ≈ 103

√
Ωb H . (33)

As one may see, plasma is closer to an ideal fluid for greater matter density. For
instance, the conventional value of Ωb = 0.03 results in the damping scale of kD ∼
170 in the units ofH .

3 CMB Spectrum

In the previous section, we have considered the perturbation theory which describes
the evolution of the plasma (radiation) in the presence of the vacuum perturbations.
This evolution extends up to the “last scattering surface”, i.e., up to a moment when
the universe becomes transparent for radiation. Conformal time of the last scattering
surface ηr corresponds to the temperatures Tr ∼ 3000 K and the redshift zr ≈ 1100.
Describing the photons’ propagation from the last scattering surface to an observer



190 S. L. Cherkas and V. L. Kalashnikov

is insufficient to use hydrodynamic approximation so that the Boltzmann equation
is needed, which can be written in the form of

∂ f

∂η
+ dxi

dη

∂ f

∂xi
+ dpi

dη

∂ f

∂pi
= St[ f ], (34)

where the right hand side St[ f ] represents the collision integral. If the distribution
function f is assumed to be a scalar, it would depend on xi and pi because the
photon number dN = f (xi , p j , η)dx1dx2dx3dp1dp2dp3 is scalar according to the
Liouville theorem and the quantity dx1dx2dx3dp1dp2dp3 is scalar. The expressions
describing the photon propagation are

dpα

dλ
= −Γ α

βγ p
β pγ = −Γ α

βγ g
βσ gγ δ pσ pδ,

dxα

dλ
= pα = gαβ pβ, (35)

where λ is an affine parameter along the photon trajectory. Using the last equation for
the zero component dx0

dλ
= dη

dλ
= p0 of derivatives with respect to λ allows rewriting

it in the terms of derivatives with respect to η.
Then, the Boltzmann equation can be reduced to the equation for a temperature

perturbation by substitution

f (xi , p j , η) = 1

exp
(

p0(η)

T0(η)
√
g00(1+Θ(n,x,η))

)
− 1

, (36)

where Θ(n, x, η) is a temperature contrast and a unit vector ni = pi/(
∑3

n=1 p
2
n).

Finally, for the coefficients of the Fourier transform Θ(n, x, η) = ∑
k Θk(η, n)eikx

calculations with the metric (5) give

∂Θk

∂η
− ikμΘk − ikμAk + A′

k + k2

6

(
3μ2 − 1

)
F ′
k = τ ′(Θk − Θ0k − vbk μ),

(37)
where μ = n · k/k is the cosine of the angle between n and k, Θ0k(η) is the com-
ponent l = 0 of Θk(n, η) in the expansion of the Legendre polynomials

Θlk = i l
∫ 1

−1
Pl(μ)Θk(μ)

dμ

2
, (38)

and vbk is the Fourier transform of the function determining baryon velocity. The
function τ(η) describes the photon Compton scattering by electrons: τ ′ = −σT nea,
where σT is a cross section of the Thomson scattering and ne is a free electron density.
Before the last scattering surface, the photons are tightly coupled with electrons and
protons by the Thomson scattering, and the electrons, in turn, are tightly coupled
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with baryons by the Coulomb interaction. As a consequence, any bulk motion of
the photons must be shared by the baryons. Although we do not consider baryons
explicitly, one may assume roughly that baryons and photons are in equilibrium and
thus [3]

vbk = −3iΘ1k(η). (39)

Further, the monopole Θ0k and dipole Θ1k components of the temperature pertur-
bations can be connected with the perturbations of density and velocity. From one
hand side, the 00-component of the energy-momentum tensor in line with (6) is

T 0
0k = δρk(η). (40)

On the other hand, it can be expressed via a temperature perturbation [1]:

T 0
0k = 4ρr

∫
Θk(n, η)

d2n
4π

. (41)

Comparison of (40) and (41) givesΘ0k(η) = 1
4ρr

δρrk(η) = 1
4δrk.Analogously, in

the first order of the perturbation theory, the components T0i take the form of

T0 j = −a2(η)(ρr (η) + pr (η))∂ jvr (η, x), (42)

or

T j
0k = 4

3
ρr (η)ik jvrk(η). (43)

At the same time [1]

T j
0k = −4ρr

∫
n jΘk(n, η)

d2n

4π
. (44)

As consequence of (38), (39), (43) and (44), one has vbk = −3iΘ1k = −ikvrk,
and Eq. (37) can be rewritten in the form of

Θ ′
k − (ikμ + τ ′)Θk = eikμη+τ d

dη

(
Θke

−ikμη−τ
) = Sk, (45)

where Sk = −τ ′ δrk
4 + τ ′ikμvrk + ikμAk − A′

k − k2

6

(
3μ2 − 1

)
F ′
k.

Solution of Eq. (45) takes the form of
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Θk(η0) = Θk(ηin)e
−iμk(ηin−η0)−τ(ηin)+τ(η0) +

∫ η0

ηin

Sk e
−iμk(η−η0)−τ(η)+τ(η0)dη ≈

∫ η0

ηin

e−τ(η)

(
−τ ′ δrk

4
− τ ′vrk

d

dη
− A′

k − Ak
d

dη

− F ′
k

6

(
−3

d2

dη2
− k2

))
e−ikμ(η−η0)dη, (46)

where η0 is the present day conformal time, ηin is some initial moment of time before
the last scattering surface, when the universe was not transparent for light. The terms
containing e−τ(ηin) are omitted because the function e−τ(η) vanishes quickly if η < ηr
[3].

Using the integral (38) and the integral

∫ 1

−1

dμ

2
Pl(μ)e−ikμ(η−η0) = 1

i l
jl(k(η − η0)) (47)

leads to

Θlk(η0) =
∫ η0

ηin

e−τ(η)

((
−τ ′ 1

4
δrk − A′

k + F ′
kk

2

6

)
jl(k(η − η0))

− (
τ ′vrk + Ak

)
k j ′l (k(η − η0)) + F ′

k

2
k2 j ′′l (k(η − η0))

)
dη. (48)

One may rewrite Eq. (48) in the terms of invariant potentials, densities and veloc-
ities (29):

Θlk(η0) =
∫ η0

ηin

e−τ(η)

(
−τ ′( δ̃rk

4
+ Φk

)
jl(k(η − η0))

−τ ′ṽrkk j ′l (k(η − η0)) + (Φ ′
k + Ψ ′

k) jl(k(η − η0))

)
dη. (49)

The integrand expressions in (48) and (50) differ by a total derivative, which does
not contribute to the integral because e−τ(ηin) ≈ 0 at the lower limit, and the Bessel
function jl(0) = 0 for l > 0 at the upper limit.

According to (30), the invariant potentials Ψ and Φ equal zero in our simplified
consideration when only δrk(ηin) is nonzero. Thus, there is no the Sachs-Wolf effect
[2] and the expression (50) is reducible to
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Θlk(η0) =
∫ η0

0
(−τ ′)e−τ(η)

(
δ̃rk

4
jl(k(η − η0)) + ṽrkk j ′l (k(η − η0))

)
dη

≈ δ̃rk(ηr )

4
jl(k(ηr − η0)) + ṽrk(ηr )k j ′l (k(ηr − η0)), (50)

where the fact is used that the visibility function g(η) = −τ ′e−τ(η)6 is peaked near
last scattering surface ηr . On the other hand, the integral

∫
g(η)dη = 1, and thereby,

it is like the Dirac delta-function g(η) = δ(η − ηr ).
Using the expressions for δ̃rk and ṽrk from (30), we obtain the expressions for the

coefficients

Cl = 2

π

∫ ∞

0
< Θlk(η0) >2 k2dk

= 2

π

∫ ∞

0

∣∣∣∣
(
12H 2 + k2

)
cos

(
k(ηr−ηin)√

3

)
+ 3

√
3H k sin

(
k(ηr−ηin)√

3

)

4
(
3H 2 + k2

) jl(k(ηr − η0))

+
9H k cos

(
k(ηr−ηin)√

3

)
− √

3
(
12H 2 + k2

)
sin

(
k(ηr−ηin)√

3

)

4
(
3H 2 + k2

) j ′l (k(ηr − η0))

∣∣∣∣
2

P(k, ηin)
dk

k
, (51)

whereP(k, ηin) = k3〈δrk(ηin)δ∗
rk(ηin)〉 is a primordial fluid spectrum which serves

as an initial condition for the plasma perturbations considered in the previous section.

3.1 Effect of the Finite Thickness of the Last Scattering
Surface

A real-world visibility function g(η) is not exactly the Dirac delta-function, but it
is smeared over a finite region of η. One may approximately assume that it has the
Gaussian form

g(η) = −τ ′(η) exp(−τ) = 1

Δηr
√
2π

exp

(
− (η − ηr )

2

2Δη2
r

)
, (52)

6The visibility function gives the probability of a CMB photon scattering out of the line of sight
within of a dη−layer on the last scattering surface [1].
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where Δηr is a width of the last scattering surface. That corresponds to

τ(η) = − ln

(
1

2
+ 1

2
erf

(
η − ηr√
2Δηr

))
. (53)

Let us consider the exact integral

∫ ∞

−∞
g(η)eik(η−η∗)dη = exp

(−k2Δη2
r /2

)
eik(ηr−η∗). (54)

As it is seen (Eq. 54), the variable η is changed by ηr in the expression eik(η−η∗)

after integration, and besides a suppression factor appears.
The expression (50) contains the exponents ei(k±k/

√
3)η originating from both

Bessel functions and δ̃k. Thus, the suppression factor e−(k±k/
√
3)2Δη2

r /2 appears in (50)
as a result of integration, which has to be introduced into the integrand of (51). The
overall damping factor originates from both Silk dumping and finite width of the last
scattering surface, but the last gives the main contribution. The calculation of the last
scattering surface width has to take into account the process of hydrogen recombina-
tion. In the standard �CDMmodel, one needs using the kinetic equations involving
at least three levels of the hydrogen atom. The Milne-like universe expands at

√
zr−

times slower than the standard�CDMone.Thus, theSaha equilibriumequation [1, 3]

npne
nH

= X2
e

1 − Xe
nb =

(
Tme

2π

)3/2

exp

(
− BH

T

)
(55)

is a good estimation,wherenp is a proton density, andnH is a density of neutral atoms.
Equation (55) allows obtaining the hydrogen ionization degree Xe = np/nb,

where nb = np + nH . An optical depth [1] is calculated as

τ(η) = σT

∫ η0

η

nb(η
′)Xe(η

′)a(η′)dη′, (56)

where nb scales as nb(η) = nb0/a3(η) and nb0 is given by (32). The visibility function
for different values of the matter density is shown in Fig. 1. As one can see the width
Δηr of the Gaussian approximation is 0.05 for Ωb = 0.03 and 0.03 for Ωb = 0.3.
In the last case, the visibility function has non-Gaussian shape. However, the initial
stage of recombination affects mainly the “left front” of the visibility function which
becomes “sharper” and can be approximated by aGaussian function shown in Fig. 1b.

The expression (54) is exact only for averaging of the exponent, however it is
approximately valid and for more complicated expressions like the integrand of (50).
As one can see from Fig. 2, the lowest suppression factor e−(k−k/

√
3)2Δη2

r /2 should be
taken for the calculations.
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Fig. 1 Visibility function g(η) = −τ ′(η) exp(−τ) for different baryon density (32) a Ωb = 0.03,
b Ωb = 0.3 (solid curves). Dashed curves are Gaussian approximations (52) with a Δηr = 0.05
and b Δηr = 0.03
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Fig. 2 Calculated damping factor due to finite width of the last scattering sur-

face D(k) =
(∫ η0

0 g(η)

(
δ̃rk(η)

4 jl(k(η − η0)) + ṽrk(η)k j ′l (k(η − η0))

)
dη

)2

/

(
δ̃rk(ηr )

4 jl(k(ηr −

η0)) + ṽrk(ηr )k j ′l (k(ηr − η0))

)2

for Δηr = 0.03, l = 300. Dashed and solid curves correspond

to D(k) = exp
(
−(k + k/

√
3)2Δη2r

)
and D(k) = exp

(
−(k − k/

√
3)2Δη2r

)
respectively

4 Results and Discussion

A distance from the last scattering surface to the present time observer is η0 − ηr .
For the Milne-like universe (12) these distances are η0 = 1

H ln 1
B and ηr = 1

H ln ar
B

respectively. Thus, one has η0 − ηr ∼ H −1 ln zr ∼ 7H −1 independent of B.
To calculate the spectrum according to (51), one needs knowing the initial spec-

trum. The standard model of cosmological inflation gives almost flat spectrum, i.e.,
P(k) ≈ const and the oscillations in the observed CMB anisotropy spectrum are
interpreted as a result of acoustic oscillation of the photon-baryon plasma. There is a
principled difference between the standard model and the linear cosmology consid-
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Fig. 3 Schematic
representation of the time
scales in the a standard
�CDM and b linear
cosmologies respectively

(a)

(b)

ered here. In the standard model, the typical angular scale is θ ∼ ηr−ηin
η0−ηr

∼ ηr
η0
. As a

consequence of ηr << η0 in the �CDMmodel, one may obtain the angular scale of
θ ∼ 1◦ coinciding with the experimental one. In the linear cosmology ηr ∼ η0 (see
scheme in Fig. 3) and the spectrum oscillations should have another origin. In par-
ticular, they could originate from the oscillations of the initial spectrum P(k, ηin),
which can be taken in the form

P(k, ηin) = 3 × 10−7| sin kηin|2. (57)

For the dependence (12), one has to take ηin ∼ 0.06 to obtain experimentally
observed angular scale, that gives θ ∼ ηin

η0−ηr
∼ 0.4◦.

It is easy to calculate cosmic (i.e. physical) time tin corresponding to the conformal
time ηin . Integrating with (12) gives tin = ∫ ηin

0 a(η)dη ≈ B ηin , where it is taken into
account that H ηin � 1. For instance, taking ηin = 0.06/H and B = 3.8 × 10−38

gives tin = 5.9 × 10−22 s, which corresponds to the lifetime of the Higgs boson
tH = 2π/ΓH , where ΓH = 7 MeV. Here, it is implied that Higgs bosons are created
initially [28], then decay into another particles and, finally, into the baryons and
photons. Taking another value of B requires connecting ηin with another physical
process.

The initial spectrum (57) has to be multiplied by the damping factor7

D(k) ≈ exp
(
−(k − k/

√
3)2Δη2

r

)
≈ exp

(−k2/80
)
. (58)

and substituted into Eq. (51).We do not predict absolute values, and the coefficient in
(57) is taken to reproduce only highest first CMB peak. The result, shown in Fig. 4a
demonstrates a too strong suppression of higher harmonics in comparison with the
observational data. To improve the agreement, one may take a rising initial spectrum

7The case of the best agreement with the observational data is considered: Ωm = 0.3, Δηr = 0.03.
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Fig. 4 a Initial spectrum multiplied by the all damping factors, i.e., the resulting spectrum
P(k) = 3 × 10−7| sin 0.06k|2 exp(−k2/2002), which reproduces the observational data qualita-
tively. b Rising initial spectrum P(k) = 3 × 10−7| sin 0.06k|2 exp(k2/872). It is seen, that the
perturbations with k > 350H lie in the nonlinear region, because P(k) > 1

(a) (b)

Fig. 5 Cosmicmicrowave anisotropy spectrumcalculatedwithin the framework of the linearMilne-
like cosmology (gray noisy curve). Black curve corresponds to the “Planck”-satellite data [30]. The
quantities Cl are dimensionless (the multiplication by the squared present CMB temperature gives
the dimensionalCl ). aCorresponds to the initial spectrum (57), b corresponds to the rising spectrum
(59)

P(k, ηin) = 3 × 10−7| sin kηin|2 exp
(
k2/κ2

in

)
. (59)

with κin = 87 in order to obtain the overall damping factor about of exp
(−k2/2002

)
,

because 80−2 − 87−2 ≈ 200−2 (Fig. 4b).
The results of calculationwith this formula is shown in Fig. 5. ThePlanck-satellite

data give a very precise measurement of the CMB anisotropy [2, 29–31]. One can
see the qualitative coincidence with the spectrum observed by the Planck-satellite.
The positions of the peaks are shifted relatively observed ones. However, it is no
wonder because the model considered is rough and requires further development. At
least, the model needs taking into account the baryonic content explicitly. Of course,
no analytic solutions for perturbations could be found with this complication. The
Silk dumping and the finite width of the last scattering surface have to be taken into
account more accurately. Besides, more complicated models of the initial spectrum
have to be considered (Fig. 4).
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From a fundamental point of view, it could imagine some breathtaking physics
like the inflation theory. However, it could be quite different, because the inflation
cannot produce, a “violet”, i.e., rising with k, initial spectrum (59). In principle,
the linear cosmology needs no inflation, because the scales of perturbations modes
always remain within the horizon and there is no need in any model like inflation
for the superhorizon spectral modes. Thus, the liner universe seems in some sense
simpler compared to the standard �CDM model. However, the most fundamental
problem of the linear cosmology is a requirement of more accurate consideration of
vacuumperturbationswith taking into account the quantumproperties of the vacuum.
The above simple model of vacuum as a fluid with the equation of state w = −1/3
is an only very rough heuristic approximation.

Unfortunately, well-known software packages such as CAMB [32] and CMB-
FAST [33] are absolutely useless for the calculation of CMB spectrum in the linear
cosmology because they assume a quite different formation mechanism for the CMB
spectrum peaks. It seems that the tools for the ionization history analysis, such as
RECFAST [34], also have to be modified to take into account more than three levels
of the hydrogen atom. It results from the fact that partially ionized hydrogen plasma is
closer to thermal equilibrium due to the slower expansion of the Milne-like universe
and, thereby, more hydrogen levels are populated. It seems that the pure equilibrium
Saha formula used above gives a sufficiently good approximation in this case.

It should also to do some notes about distortion of the CMB spectrum from
blackbody one [35]. The expected distortion of the spectrum caused by hydrogen
recombination should be mach smaller than that in the �CDM model.

Appendix

The expression for the perturbation of the vacuum density is given by

δρvk = B2H 3Mp
2e−4ηH

8ρr0
2
(
3H 2 + k2

)
(

−C1
(
B2H Mp

2e2ηH (3H 2 + 2i
√
3H k − k2)

−6H ρr0 + 2i
√
3kρr0

)
e−i ηk√

3 + C2
( − B2H Mp

2e2ηH (3H 2 − 2i
√
3H k − k2)

+6H ρr0 + 2i
√
3kρr0

)
ei

ηk√
3

)
+ B2H 3Mp

2e−2ηH

4ρr0
(
3H 2 + k2

)
(
C3(3H + i

√
3k)e−i ηk√

3

+C4(3H − i
√
3k)ei

ηk√
3

)
− k4Mp

2e−3ηH

18B2

(
Z1e

−η

√
H 2+ k2

3 + Z2e
η

√
H 2+ k2

3

)
,
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Then

Vvk = − B2H 2M2
pe

−4ηH

24ρ2
r0

(
3H 2k + k3

)
(
C1

(
B2H kMp

2e2ηH (3H 2 + 2i
√
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(
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